Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28164040

RESUMO

Dermatophytosis is one of the most common human infections affecting both immunocompetent individuals and immunocompromised patients, in whom the disease is more aggressive and can reach deep tissues. Over the last decades, cases of deep dermatophytosis have increased and the dermatophyte-host interplay remains poorly investigated. Pattern recognition molecules, such as Toll-like receptors (TLR), play a crucial role against infectious diseases. However, there has been very little research reported on dermatophytosis. In the present study, we investigated the role of TLR2 during the development of experimental deep dermatophytosis in normal mice and mice with alloxan-induced diabetes mellitus, an experimental model of diabetes that exhibits a delay in the clearance of the dermatophyte, Trichophyton mentagrophytes (Tm). Our results demonstrated that inoculation of Tm into the footpads of normal mice increases the expression of TLR2 in CD115+Ly6Chigh blood monocytes and, in hypoinsulinemic-hyperglycemic (HH) mice infected with Tm, the increased expression of TLR2 was exacerbated. To understand the role of TLR2 during the development of murine experimental deep dermatophytosis, we employed TLR2 knockout mice. Tm-infected TLR2-/- and TLR2+/+ wild-type mice exhibited similar control of deep dermatophytic infection and macrophage activity; however, TLR2-/- mice showed a noteworthy increase in production of IFN-γ, IL-10, and IL-17, and an increased percentage of splenic CD25+Foxp3+ Treg cells. Interestingly, TLR2-/- HH-Tm mice exhibited a lower fungal load and superior organization of tissue inflammatory responses, with high levels of production of hydrogen peroxide by macrophages, alongside low TNF-α and IL-10; high production of IL-10 by spleen cells; and increased expansion of Tregs. In conclusion, we demonstrate that TLR2 diminishes the development of adaptive immune responses during experimental deep dermatophytosis and, in a diabetic scenario, acts to intensify a non-protective inflammatory response.


Assuntos
Complicações do Diabetes , Tinha/imunologia , Receptor 2 Toll-Like/deficiência , Trichophyton/imunologia , Animais , Contagem de Colônia Microbiana , Citocinas/metabolismo , Modelos Animais de Doenças , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
2.
Mediators Inflamm ; 2015: 342345, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26538824

RESUMO

Dermatophytes are fungi responsible for causing superficial infections. In patients with diabetes mellitus (DM), dermatophytosis is usually more severe and recurrent. In the present study, we aimed to investigate the influence of short and long term hypoinsulinemia-hyperglycemia (HH) during experimental infection by Trichophyton mentagrophytes as well as alterations in the mononuclear phagocytes. Our results showed two distinct profiles of fungal outcome and immune response. Short term HH induced a discrete impaired proinflammatory response by peritoneal adherent cells (PAC) and a delayed fungal clearance. Moreover, long term HH mice showed low and persistent fungal load and a marked reduction in the production of TNF-α by PAC. Furthermore, while the inoculation of TM in non-HH mice triggered high influx of Gr1(+) monocytes into the peripheral blood, long term HH mice showed low percentage of these cells. Thus, our results demonstrate that the time of exposure of HH interferes with the TM infection outcome as well as the immunobiology of mononuclear phagocytes, including fresh monocyte recruitment from bone marrow and PAC activity.


Assuntos
Hiperglicemia/imunologia , Insulina/sangue , Fagócitos/microbiologia , Tinha/imunologia , Aloxano/química , Animais , Medula Óssea/patologia , Adesão Celular , Diabetes Mellitus/microbiologia , Humanos , Peróxido de Hidrogênio/química , Hiperglicemia/complicações , Hiperglicemia/microbiologia , Sistema Imunitário , Inflamação , Macrófagos/citologia , Masculino , Camundongos , Monócitos/citologia , Óxido Nítrico/química , Peritônio/patologia , Fagócitos/citologia , Fagócitos/metabolismo , Células-Tronco , Tinha/complicações , Tinha/microbiologia , Resultado do Tratamento , Trichophyton , Fator de Necrose Tumoral alfa/metabolismo
3.
J Immunol Res ; 2015: 635052, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969836

RESUMO

Multiple sclerosis (MS) is an inflammatory/autoimmune disease of the central nervous system (CNS) mainly mediated by myelin specific T cells. It is widely believed that environmental factors, including fungal infections, contribute to disease induction or evolution. Even though Candida infection among MS patients has been described, the participation of this fungus in this pathology is not clear. The purpose of this work was to evaluate the effect of a Candida albicans infection on experimental autoimmune encephalomyelitis (EAE) that is a widely accepted model to study MS. Female C57BL/6 mice were infected with C. albicans and 3 days later, animals were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein. Previous infection increased the clinical score and also the body weight loss. EAE aggravation was associated with expansion of peripheral CD4(+) T cells and production of high levels of TNF-α, IFN-γ IL-6, and IL-17 by spleen and CNS cells. In addition to yeast and hyphae, fungus specific T cells were found in the CNS. These findings suggest that C. albicans infection before EAE induction aggravates EAE, and possibly MS, mainly by CNS dissemination and local induction of encephalitogenic cytokines. Peripheral production of encephalitogenic cytokines could also contribute to disease aggravation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Candidíase/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/microbiologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Candida albicans/imunologia , Células Cultivadas , Sistema Nervoso Central/citologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/farmacologia , Fragmentos de Peptídeos/farmacologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA