Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
4.
Cancers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958436

RESUMO

Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.

5.
J Transl Med ; 21(1): 783, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925448

RESUMO

Prior research has shown that the deconvolution of cell-free RNA can uncover the tissue origin. The conventional deconvolution approaches rely on constructing a reference tissue-specific gene panel, which cannot capture the inherent variation present in actual data. To address this, we have developed a novel method that utilizes a neural network framework to leverage the entire training dataset. Our approach involved training a model that incorporated 15 distinct tissue types. Through one semi-independent and two complete independent validations, including deconvolution using a semi in silico dataset, deconvolution with a custom normal tissue mixture RNA-seq data, and deconvolution of longitudinal circulating tumor cell RNA-seq (ctcRNA) data from a cancer patient with metastatic tumors, we demonstrate the efficacy and advantages of the deep-learning approach which were exerted by effectively capturing the inherent variability present in the dataset, thus leading to enhanced accuracy. Sensitivity analyses reveal that neural network models are less susceptible to the presence of missing data, making them more suitable for real-world applications. Moreover, by leveraging the concept of organotropism, we applied our approach to trace the migration of circulating tumor cell-derived RNA (ctcRNA) in a cancer patient with metastatic tumors, thereby highlighting the potential clinical significance of early detection of cancer metastasis.


Assuntos
Células Neoplásicas Circulantes , RNA , Humanos , Redes Neurais de Computação , RNA-Seq , Análise de Sequência de RNA
6.
Cancer Res Commun ; 2(11): 1436-1448, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407834

RESUMO

Melanoma brain metastasis (MBM) is linked to poor prognosis and low overall survival. We hypothesized that melanoma circulating tumor cells (CTCs) possess a gene signature significantly expressed and associated with MBM. Employing a multi-pronged approach, we provide first-time evidence identifying a common CTC gene signature for ribosomal protein large/small subunits (RPL/RPS) which associate with MBM onset and progression. Experimental strategies involved capturing, transcriptional profiling and interrogating CTCs, either directly isolated from blood of melanoma patients at distinct stages of MBM progression or from CTC-driven MBM in experimental animals. Second, we developed the first Magnetic Resonance Imaging (MRI) CTC-derived MBM xenograft model (MRI-MBM CDX) to discriminate MBM spatial and temporal growth, recreating MBM clinical presentation and progression. Third, we performed the comprehensive transcriptional profiling of MRI-MBM CDXs, along with longitudinal monitoring of CTCs from CDXs possessing/not possessing MBM. Our findings suggest that enhanced ribosomal protein content/ribogenesis may contribute to MBM onset. Since ribosome modifications drive tumor progression and metastatic development by remodeling CTC translational events, overexpression of the CTC RPL/RPS gene signature could be implicated in MBM development. Collectively, this study provides important insights for relevance of the CTC RPL/RPS gene signature in MBM, and identify potential targets for therapeutic intervention to improve patient care for melanoma patients diagnosed with or at high-risk of developing MBM.


Assuntos
Neoplasias Encefálicas , Melanoma , Células Neoplásicas Circulantes , Animais , Humanos , Melanoma/genética , Células Neoplásicas Circulantes/metabolismo , Neoplasias Encefálicas/genética , Proteínas Ribossômicas/genética
7.
Cancers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638368

RESUMO

Fatal metastasis occurs when circulating tumor cells (CTCs) disperse through the blood to initiate a new tumor at specific sites distant from the primary tumor. CTCs have been classically defined as nucleated cells positive for epithelial cell adhesion molecule and select cytokeratins (EpCAM/CK/DAPI), while negative for the common lymphocyte marker CD45. The enumeration of CTCs allows an estimation of the overall metastatic burden in breast cancer patients, but challenges regarding CTC heterogeneity and metastatic propensities persist, and their decryption could improve therapies. CTCs from metastatic breast cancer (mBC) patients were captured using the RareCyteTM Cytefinder II platform. The Lin- and Lin+ (CD45+) cell populations isolated from the blood of three of these mBC patients were analyzed by single-cell transcriptomic methods, which identified a variety of immune cell populations and a cluster of cells with a distinct gene expression signature, which includes both cells expressing EpCAM/CK ("classic" CTCs) and cells possessing an array of genes not previously associated with CTCs. This study put forward notions that the identification of these genes and their interactions will promote novel areas of analysis by dissecting properties underlying CTC survival, proliferation, and interaction with circulatory immune cells. It improves upon capabilities to measure and interfere with CTCs for impactful therapeutic interventions.

8.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575420

RESUMO

Despite widespread knowledge that bone marrow-resident breast cancer cells (BMRCs) affect tumor progression, signaling mechanisms of BMRCs implicated in maintaining long-term dormancy have not been characterized. To overcome these hurdles, we developed a new experimental model of clinical dormancy employing patient-isolated Circulating Tumor Cells (de novo CTCs) and their injection in xenografts with subsequent tumor monitoring and CTC characterization (ex vivo CTCs). We hypothesized that significant distinctions exist between signaling pathways of bone marrow-homing vs metastasis-competent CTCs upon transplantation in xenografts. Comparative transcriptomic analyses of ex vivo vs de novo CTCs identified increased mTOR signaling-a critical pathway frequently dysregulated in breast cancer and implicated in cell survival and dormancy-with contrasting actions by its two complementary arms (mTORC2/mTORC1). Heightened mTORC2 downstream targets augmented quiescent CTCs (Ki67-/RBL2+ cells) in paired breast cancer tissues, along with high mTORC2 activity in solitary BMRCs and tissue-resident CTCs. Further, shRNA mediated the knockdown of RICTOR, an essential component of mTORC2, and augmented Ki67/PCNA biomarker expression and proliferation. Collectively, these findings suggest that the balance between mTORC1 vs mTORC2 signaling regulates CTC-associated mitotic and/or dormancy characteristics.

10.
Mol Oncol ; 13(9): 1913-1926, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31216110

RESUMO

Triple-negative breast cancer (TNBC) liver metastasis is associated with poor prognosis and low patient survival. It occurs when tumor cells disseminate from primary tumors, circulate in blood/lymph [circulating tumor cells (CTCs)], and acquire distinct characteristics during disease progression toward the metastatic phenotype. The purpose of this study was to decipher the genomic/transcriptomic properties of TNBC liver metastasis and its recurrence for potential therapeutic targeting. We employed a negative depletion strategy to isolate and interrogate CTCs from the blood of patients with TNBC, and to establish sequential generations of CTC-derived xenografts (CDXs) through injection of patient CTCs in immunodeficient mice. The isolation and validation of CDX-derived cell populations [analyses of CTCs were paired with bone marrow-resident cells (BMRTCs) and liver tissue cells obtained from the same animal] were performed by multiparametric flow cytometry, immune phenotyping, and genomic sequencing of putative CTCs. Comprehensive characterization of gene expression arrays from sequentially generated CDX-derived cell populations, online gene expression arrays, and TCGA databases were employed to discover a CTC-driven, liver metastasis-associated TNBC signature. We discovered a distinct transcriptomic signature of TNBC patient-isolated CTCs from primary TNBCs, which was consistent throughout sequential CDX modeling. We established a novel TNBC liver metastasis-specific CDX model that selectively recapitulates CTC biology for four sequential generations of mice. The evaluation of online databases and CDX-derived populations revealed 597 genes specific to the TNBC liver metastasis signatures. Further investigation of the TNBC liver metastasis signature predicted 16 hub genes, 6 biomarkers with clinically available drugs, and 22 survival genes. The sequential interrogation of CDX-CTCs is an innovative liquid biopsy-based approach for the discovery of organ metastasis-specific signatures of CTCs. This represents the first step for mechanistic and analytical validation in their application as prognostic indicators and therapeutic targets. Targeting CTC drug candidate biomarkers along with combination therapy can improve the clinical outcome of TNBC patients in general and recurrence of liver metastasis in particular.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Proteínas de Neoplasias/biossíntese , Células Neoplásicas Circulantes/metabolismo , Transcriptoma , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Transplante de Neoplasias , Células Neoplásicas Circulantes/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
11.
Int J Mol Sci ; 20(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003475

RESUMO

Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients' blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.


Assuntos
Neoplasias da Mama/sangue , Carcinogênese/genética , Melanoma/sangue , Células Supressoras Mieloides/metabolismo , Adulto , Idoso , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transplante de Células/métodos , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Pessoa de Meia-Idade , Células Supressoras Mieloides/patologia , Fator 2 Relacionado a NF-E2/genética , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch1/genética , Proteínas de Transporte Vesicular/genética
12.
Cancer Res ; 78(18): 5349-5362, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30026332

RESUMO

Systemic metastasis is the major cause of death from melanoma, the most lethal form of skin cancer. Although most patients with melanoma exhibit a substantial gap between onset of primary and metastatic tumors, signaling mechanisms implicated in the period of metastatic latency remain unclear. We hypothesized that melanoma circulating tumor cells (CTC) home to and reside in the bone marrow during the asymptomatic phase of disease progression. Using a strategy to deplete normal cell lineages (Lin-), we isolated CTC-enriched cell populations from the blood of patients with metastatic melanoma, verified by the presence of putative CTCs characterized by melanoma-specific biomarkers and upregulated gene transcripts involved in cell survival and prodevelopment functions. Implantation of Lin- population in NSG mice (CTC-derived xenografts, i.e., CDX), and subsequent transcriptomic analysis of ex vivo bone marrow-resident tumor cells (BMRTC) versus CTC identified protein ubiquitination as a significant regulatory pathway of BMRTC signaling. Selective inhibition of USP7, a key deubiquinating enzyme, arrested BMRTCs in bone marrow locales and decreased systemic micrometastasis. This study provides first-time evidence that the asymptomatic progression of metastatic melanoma can be recapitulated in vivo using patient-isolated CTCs. Furthermore, these results suggest that USP7 inhibitors warrant further investigation as a strategy to prevent progression to overt clinical metastasis.Significance: These findings provide insights into mechanism of melanoma recurrence and propose a novel approach to inhibit systematic metastatic disease by targeting bone marrow-resident tumor cells through pharmacological inhibition of USP7.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/18/5349/F1.large.jpg Cancer Res; 78(18); 5349-62. ©2018 AACR.


Assuntos
Células da Medula Óssea/metabolismo , Melanoma/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias Cutâneas/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Medula Óssea/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Mitocondrial/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Inflamação , Leucócitos Mononucleares/citologia , Melanoma/sangue , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Recidiva Local de Neoplasia , Transplante de Neoplasias , Neoplasias Cutâneas/sangue
14.
Stem Cell Reports ; 10(1): 212-227, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29249663

RESUMO

Here, we show that HEMATOLOGICAL AND NEUROLOGICAL EXPRESSED 1-LIKE (HN1L) is a targetable breast cancer stem cell (BCSC) gene that is altered in 25% of whole breast cancer and significantly correlated with shorter overall or relapse-free survival in triple-negative breast cancer (TNBC) patients. HN1L silencing reduced the population of BCSCs, inhibited tumor initiation, resensitized chemoresistant tumors to docetaxel, and hindered cancer progression in multiple TNBC cell line-derived xenografts. Additionally, gene signatures associated with HN1L correlated with shorter disease-free survival of TNBC patients. We defined HN1L as a BCSC transcription regulator for genes involved in the LEPR-STAT3 signaling axis as HN1L binds to a putative consensus upstream sequence of STAT3, LEPTIN RECEPTOR, and MIR-150. Our data reveal that BCSCs in TNBC depend on the transcription regulator HN1L for the sustained activation of the LEPR-STAT3 pathway, which makes it a potentially important target for both prognosis and BCSC therapy.


Assuntos
Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores para Leptina/genética , Elementos de Resposta , Fator de Transcrição STAT3/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Oncotarget ; 9(101): 37464-37465, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30680060
16.
Nat Commun ; 8(1): 196, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28775303

RESUMO

The enumeration of EpCAM-positive circulating tumor cells (CTCs) has allowed estimation of overall metastatic burden in breast cancer patients. However, a thorough understanding of CTCs associated with breast cancer brain metastasis (BCBM) is necessary for early identification and evaluation of treatment response to BCBM. Here we report that BCBM CTCs is enriched in a distinct sub-population of cells identifiable by their biomarker expression and mutational content. Deriving from a comprehensive analysis of CTC transcriptomes, we discovered a unique "circulating tumor cell gene signature" that is distinct from primary breast cancer tissues. Further dissection of the circulating tumor cell gene signature identified signaling pathways associated with BCBM CTCs that may have roles in potentiating BCBM. This study proposes CTC biomarkers and signaling pathways implicated in BCBM that may be used either as a screening tool for brain micro-metastasis detection or for making rational treatment decisions and monitoring therapeutic response in patients with BCBM.Characterization of CTCs derived from breast cancer patients with brain metastasis (BCBM) may allow for early diagnosis of brain metastasis and/or help for treatment choice and its efficacy. In this study, the authors identify a unique signature, based on patient-derived CTCs transcriptomes, for BCBM- CTCs that is different from primary tumors.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Células Neoplásicas Circulantes/metabolismo , Transcriptoma/genética , Sequência de Bases , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Detecção Precoce de Câncer , Molécula de Adesão da Célula Epitelial/genética , Feminino , Humanos , Análise de Sequência de DNA/métodos
17.
Sci Rep ; 5: 17533, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631983

RESUMO

Uncovering CTCs phenotypes offer the promise to dissect their heterogeneity related to metastatic competence. CTC survival rates are highly variable and this can lead to many questions as yet unexplored properties of CTCs responsible for invasion and metastasis vs dormancy. We isolated CTC subsets from peripheral blood of patients diagnosed with or without breast cancer brain metastasis. CTC subsets were selected for EpCAM negativity but positivity for CD44(+)/CD24(-) stem cell signature; along with combinatorial expression of uPAR and int ß1, two markers directly implicated in breast cancer dormancy mechanisms. CTC subsets were cultured in vitro generating 3D CTC tumorspheres which were interrogated for biomarker profiling and biological characteristics. We identified proliferative and invasive properties of 3D CTC tumorspheres distinctive upon uPAR/int ß1 combinatorial expression. The molecular characterization of uPAR/int ß1 CTC subsets may enhance abilities to prospectively identify patients who may be at high risk of developing BCBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias Encefálicas/patologia , Adesão Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Antígenos Comuns de Leucócito/metabolismo , Pessoa de Meia-Idade , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Análise de Célula Única/métodos , Esferoides Celulares/patologia , Células Tumorais Cultivadas
18.
Nat Med ; 21(5): 524-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849134

RESUMO

Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking therapeutic effects in solid tumors than in lymphoid malignancies. Although active tumor-mediated immunosuppression may have a role in limiting the efficacy of CAR-T cells, functional changes in T lymphocytes after their ex vivo manipulation may also account for the reduced ability of cultured CAR-T cells to penetrate stroma-rich solid tumors compared with lymphoid tissues. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE), which degrades heparan sulfate proteoglycans, the main components of ECM. We found that HPSE mRNA is downregulated in in vitro-expanded T cells, which may be a consequence of p53 (officially known as TP53, encoding tumor protein 53) binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed their improved capacity to degrade the ECM, which promoted tumor T cell infiltration and antitumor activity. The use of this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors.


Assuntos
Glucuronidase/fisiologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Separação Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/química , Feminino , Citometria de Fluxo , Heparina/análogos & derivados , Heparina/química , Humanos , Células MCF-7 , Masculino , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteoglicanas/química , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Neoplasia ; 17(1): 101-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25622903

RESUMO

Heparanase (HPSE) is the dominant mammalian endoglycosidase and important tumorigenic, angiogenic, and pro-metastatic molecule. Highest levels of HPSE activity have been consistently detected in cells possessing highest propensities to colonize the brain, emphasizing the therapeutic potential for targeting HPSE in brain metastatic breast cancer (BMBC). Lapatinib (Tykerb) is a small-molecule and dual inhibitor of human epidermal growth factor receptor1 and 2 (EGFR and HER2, respectively) which are both high-risk predictors of BMBC. It was approved by the US Food and Drug Administration for treatment of patients with advanced or metastatic breast cancer. However, its role is limited in BMBC whose response rates to lapatinib are significantly lower than those for extracranial metastasis. Because HPSE can affect EGFR phosphorylation, we examined Roneparstat, a non-anticoagulant heparin with potent anti-HPSE activity, to inhibit EGFR signaling pathways and BMBC onset using lapatinib-resistant clones generated from HER2-transfected, EGFR-expressing MDA-MB-231BR cells. Cell growth, EGFR pathways, and HPSE targets were assessed among selected clones in the absence or presence of Roneparstat and/or lapatinib. Roneparstat overcame lapatinib resistance by inhibiting pathways associated with EGFR tyrosine residues that are not targeted by lapatinib. Roneparstat inhibited the growth and BMBC abilities of lapatinib-resistant clones. A molecular mechanism was identified by which HPSE mediates an alternative survival pathway in lapatinib-resistant clones and is modulated by Roneparstat. These results demonstrate that the inhibition of HPSE-mediated signaling plays important roles in lapatinib resistance, and provide mechanistic insights to validate the use of Roneparstat for novel BMBC therapeutic strategies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Glucuronidase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Humanos , Lapatinib , Receptor ErbB-2/genética , Transdução de Sinais , Transfecção , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 8(9): e73790, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066071

RESUMO

Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM) versus non-brain metastatic (non-BM) cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM) variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210) and two down-regulated miRNAs (miR-19a and miR-29c) in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.


Assuntos
Neoplasias Encefálicas/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Western Blotting , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular , Proliferação de Células , Exossomos/genética , Exossomos/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA