Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007396

RESUMO

Dissipative particle dynamics (DPD) is a widespread computational tool to simulate the behavior of soft matter and liquids in and out of equilibrium. Although there are many applications in which the effect of temperature is relevant, most of the DPD studies have been carried out at a fixed system temperature. Therefore, this work investigates how to incorporate the effect of system temperature variation within the DPD model to capture realistic temperature-dependent system properties. In particular, this work focuses on the relationship between temperature and transport properties, and therefore, an extended DPD model for transport properties prediction is employed. Transport properties, unlike the equilibrium properties, are often overlooked despite their significant influence on the flow dynamics of non-isothermal mesoscopic systems. Moreover, before simulating the response of the system induced by a temperature change, it is important to first estimate transport properties at a certain temperature. Thus here, the same fluid is simulated across different temperature conditions using isothermal DPD with the aim to identify a temperature-dependent parametrization methodology, capable of ensuring the correctness of both equilibrium and dynamical properties. Liquid water is used as a model system for these analyses. This work proposes a temperature-dependent form of the extended DPD model where both conservative and non-conservative interaction parameters incorporate the variation of the temperature. The predictions provided by our simulations are in excellent agreement with experimental data.

2.
Chemosphere ; 289: 133058, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838840

RESUMO

The aim of this study is the evaluation of the environmental sustainability by means of Life Cycle Assessment (LCA) and economic profitability through Life Cycle Costing (LCC) of the 18 anaerobic digestion (AD) configurations carried out on Organic Fraction Municipal Solid Waste (OFMSW) at three Substrate Inoculum (S:I) ratios (1:2, 1:1 and 2:1) for three different inoculum incubation times (0, 5 and 10 d). The adopted approach was the eco-efficiency perspective, coming from the combination of technical, environmental (LCA) and economic (LCC) perspectives. The main findings of the study were that increasing both the S:I ratio and the inoculum incubation time (5 and 10 d) the environmental impacts decreased, and economic profitability increased. The lowest values of Climate Change were achieved by the AD performed with both inocula WAS and CAS for 10 d at S:I equal to 2:1: 28.67 and 27.72 kg CO2 eq respectively. The minimum AD plant size for which all the 18 AD configurations was economically profitable after 5 y of amortization was 30,000 t/y of OFMSW. Capital and operational costs decreased by increasing the incubation time of the inoculum and the S:I ratio, since higher specific biogas rate was reached, and smaller AD bio-reactor volume were adopted because hydraulic retention time decreased. The AD plant size, for which maximal revenues and minimal capital and operational costs were detected, was 50,000 t/y OFMSW. Among all the AD configurations, the environmental sustainability and economic profitability were reached by test perfomed with inocula WAS and CAS incubated for 5 and 10 d at the highest S:I ratio 2:1.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Anaerobiose , Animais , Reatores Biológicos , Estágios do Ciclo de Vida , Metano , Resíduos Sólidos/análise
3.
J Colloid Interface Sci ; 282(2): 380-96, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15589543

RESUMO

An experimental and computational investigation of the effects of local fluid shear rate on the aggregation and breakage of approximately 10 microm latex spheres suspended in an aqueous solution undergoing laminar Taylor-Couette flow was carried out according to the following program. First, computational fluid dynamics (CFD) simulations were performed and the flow field predictions were validated with data from particle image velocimetry experiments. Subsequently, the quadrature method of moments (QMOM) was implemented into the CFD code to obtain predictions for mean particle size that account for the effects of local shear rate on the aggregation and breakage. These predictions were then compared with experimental data for latex sphere aggregates (using an in situ optical imaging method) and with predictions using spatial average shear rates. The mean particle size evolution predicted by CFD and QMOM using appropriate kinetic expressions that incorporate information concerning the particle morphology (fractal dimension) and the local fluid viscous effects on aggregation collision efficiency match well with the experimental data.


Assuntos
Biofísica/instrumentação , Biofísica/métodos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Cinética , Microscopia de Vídeo , Modelos Estatísticos , Tamanho da Partícula , Poliestirenos/química , Estresse Mecânico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA