Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(5): 787-797, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127332

RESUMO

High-throughput genotyping enables the large-scale analysis of genetic diversity in population genomics and genome-wide association studies that combine the genotypic and phenotypic characterization of large collections of accessions. Sequencing-based approaches for genotyping are progressively replacing traditional genotyping methods because of the lower ascertainment bias. However, genome-wide genotyping based on sequencing becomes expensive in species with large genomes and a high proportion of repetitive DNA. Here we describe the use of CRISPR-Cas9 technology to deplete repetitive elements in the 3.76-Gb genome of lentil (Lens culinaris), 84% consisting of repeats, thus concentrating the sequencing data on coding and regulatory regions (single-copy regions). We designed a custom set of 566,766 gRNAs targeting 2.9 Gbp of repeats and excluding repetitive regions overlapping annotated genes and putative regulatory elements based on ATAC-seq data. The novel depletion method removed ∼40% of reads mapping to repeats, increasing those mapping to single-copy regions by ∼2.6-fold. When analyzing 25 million fragments, this repeat-to-single-copy shift in the sequencing data increased the number of genotyped bases of ∼10-fold compared to nondepleted libraries. In the same condition, we were also able to identify ∼12-fold more genetic variants in the single-copy regions and increased the genotyping accuracy by rescuing thousands of heterozygous variants that otherwise would be missed because of low coverage. The method performed similarly regardless of the multiplexing level, type of library or genotypes, including different cultivars and a closely related species (L. orientalis). Our results showed that CRISPR-Cas9-driven repeat depletion focuses sequencing data on single-copy regions, thus improving high-density and genome-wide genotyping in large and repetitive genomes.


Assuntos
Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Genótipo , Genoma de Planta , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
Plants (Basel) ; 12(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679033

RESUMO

High-throughput chromosome conformation capture (Hi-C) is widely used for scaffolding in de novo assembly because it produces highly contiguous genomes, but its indirect statistical approach can introduce connection errors. We employed optical mapping (Bionano Genomics) as an orthogonal scaffolding technology to assess the structural solidity of Hi-C reconstructed scaffolds. Optical maps were used to assess the correctness of five de novo genome assemblies based on long-read sequencing for contig generation and Hi-C for scaffolding. Hundreds of inconsistencies were found between the reconstructions generated using the Hi-C and optical mapping approaches. Manual inspection, exploiting raw long-read sequencing data and optical maps, confirmed that several of these conflicts were derived from Hi-C joining errors. Such misjoins were widespread, involved the connection of both small and large contigs, and even overlapped annotated genes. We conclude that the integration of optical mapping data after, not before, Hi-C-based scaffolding, improves the quality of the assembly and limits reconstruction errors by highlighting misjoins that can then be subjected to further investigation.

3.
Pathogens ; 11(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215142

RESUMO

Rapid and sensitive assays for the identification of plant pathogens are necessary for the effective management of crop diseases. The main limitation of current diagnostic testing is the inability to combine broad and sensitive pathogen detection with the identification of key strains, pathovars, and subspecies. Such discrimination is necessary for quarantine pathogens, whose management is strictly dependent on genotype identification. To address these needs, we have established and evaluated a novel all-in-one diagnostic assay based on nanopore sequencing for the detection and simultaneous characterization of quarantine pathogens, using Xylella fastidiosa as a case study. The assay proved to be at least as sensitive as standard diagnostic tests and the quantitative results agreed closely with qPCR-based analysis. The same sequencing results also allowed discrimination between subspecies when present either individually or in combination. Pathogen detection and typing were achieved within 13 min of sequencing owing to the use of an internal control that allowed to stop sequencing when sufficient data had accumulated. These advantages, combined with the use of portable equipment, will facilitate the development of next-generation diagnostic assays for the efficient monitoring of other plant pathogens.

4.
BMC Genomics ; 23(1): 159, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209840

RESUMO

BACKGROUND: 'Nebbiolo' is a grapevine cultivar typical of north-western Italy, appreciated for producing high-quality red wines. Grapevine cultivars are characterized by possessing highly heterozygous genomes, including a great incidence of genomic rearrangements larger than 50 bp, so called structural variations (SVs). Even though abundant, SVs are an under-explored source of genetic variation mainly due to methodological limitations at their detection. RESULTS: We employed a multiple platform approach to produce long-range genomic data for two different 'Nebbiolo' clones, namely: optical mapping, long-reads and linked-reads. We performed a haplotype-resolved de novo assembly for cultivar 'Nebbiolo' (clone CVT 71) and used an ab-initio strategy to annotate it. The annotated assembly enhanced our ability to detect SVs, enabling the study of genomic regions not present in the grapevines' reference genome and accounting for their functional implications. We performed variant calling analyses at three different organizational levels: i) between haplotypes of clone CVT 71 (primary assembly vs haplotigs), ii) between 'Nebbiolo' and 'Cabernet Sauvignon' assemblies and iii) between clones CVT 71 and CVT 185, representing different 'Nebbiolo' biotypes. The cumulative size of non-redundant merged SVs indicated a total of 79.6 Mbp for the first comparison and 136.1 Mbp for the second one, while no SVs were detected for the third comparison. Interestingly, SVs differentiating cultivars and haplotypes affected similar numbers of coding genes. CONCLUSIONS: Our results suggest that SVs accumulation rate and their functional implications in 'Nebbiolo' genome are highly-dependent on the organizational level under study. SVs are abundant when comparing 'Nebbiolo' to a different cultivar or the two haplotypes of the same individual, while they turned absent between the two analysed clones.


Assuntos
Vitis , Variação Estrutural do Genoma , Itália , Vitis/genética
5.
Front Genet ; 12: 743230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646309

RESUMO

Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.

6.
Genomics ; 113(4): 1628-1638, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839270

RESUMO

Sequencing the SARS-CoV-2 genome from clinical samples can be challenging, especially in specimens with low viral titer. Here we report Accurate SARS-CoV-2 genome Reconstruction (ACoRE), an amplicon-based viral genome sequencing workflow for the complete and accurate reconstruction of SARS-CoV-2 sequences from clinical samples, including suboptimal ones that would usually be excluded even if unique and irreplaceable. The protocol was optimized to improve flexibility and the combination of technical replicates was established as the central strategy to achieve accurate analysis of low-titer/suboptimal samples. We demonstrated the utility of the approach by achieving complete genome reconstruction and the identification of false-positive variants in >170 clinical samples, thus avoiding the generation of inaccurate and/or incomplete sequences. Most importantly, ACoRE was crucial to identify the correct viral strain responsible of a relapse case, that would be otherwise mis-classified as a re-infection due to missing or incorrect variant identification by a standard workflow.


Assuntos
COVID-19/genética , Genoma Viral/genética , Reinfecção/genética , SARS-CoV-2/genética , COVID-19/patologia , COVID-19/virologia , Variação Genética/genética , Humanos , Reinfecção/patologia , Reinfecção/virologia , SARS-CoV-2/patogenicidade , Sequenciamento Completo do Genoma
7.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271988

RESUMO

The reconstruction of individual haplotypes can facilitate the interpretation of disease risks; however, high costs and technical challenges still hinder their assessment in clinical settings. Second-generation sequencing is the gold standard for variant discovery but, due to the production of short reads covering small genomic regions, allows only indirect haplotyping based on statistical methods. In contrast, third-generation methods such as the nanopore sequencing platform developed by Oxford Nanopore Technologies (ONT) generate long reads that can be used for direct haplotyping, with fewer drawbacks. However, robust standards for variant phasing in ONT-based target resequencing efforts are not yet available. In this study, we presented a streamlined proof-of-concept workflow for variant calling and phasing based on ONT data in a clinically relevant 12-kb region of the APOE locus, a hotspot for variants and haplotypes associated with aging-related diseases and longevity. Starting with sequencing data from simple amplicons of the target locus, we demonstrated that ONT data allow for reliable single-nucleotide variant (SNV) calling and phasing from as little as 60 reads, although the recognition of indels is less efficient. Even so, we identified the best combination of ONT read sets (600) and software (BWA/Minimap2 and HapCUT2) that enables full haplotype reconstruction when both SNVs and indels have been identified previously using a highly-accurate sequencing platform. In conclusion, we established a rapid and inexpensive workflow for variant phasing based on ONT long reads. This allowed for the analysis of multiple samples in parallel and can easily be implemented in routine clinical practice, including diagnostic testing.


Assuntos
Testes Genéticos , Genômica , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Apolipoproteínas E/genética , Mapeamento Cromossômico , Tomada de Decisão Clínica , Biologia Computacional/métodos , Gerenciamento Clínico , Amplificação de Genes , Loci Gênicos , Testes Genéticos/métodos , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Tipagem Molecular/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Software
8.
Sci Rep ; 10(1): 9424, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523024

RESUMO

The exome contains many obscure regions difficult to explore with current short-read sequencing methods. Repetitious genomic regions prevent the unique alignment of reads, which is essential for the identification of clinically-relevant genetic variants. Long-read technologies attempt to resolve multiple-mapping regions, but they still produce many sequencing errors. Thus, a new approach is required to enlighten the obscure regions of the genome and rescue variants that would be otherwise neglected. This work aims to improve the alignment of multiple-mapping reads through the extension of the standard DNA fragment size. As Illumina can sequence fragments up to 550 bp, we tested different DNA fragment lengths using four major commercial WES platforms and found that longer DNA fragments achieved a higher genotypability. This metric, which indicates base calling calculated by combining depth of coverage with the confidence of read alignment, increased from hundreds to thousands of genes, including several associated with clinical phenotypes. While depth of coverage has been considered crucial for the assessment of WES performance, we demonstrated that genotypability has a greater impact in revealing obscure regions, with ~1% increase in variant calling in respect to shorter DNA fragments. Results confirmed that this approach enlightened many regions previously not explored.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Exoma/genética , Genoma Humano/genética , Genômica/métodos , Genótipo , Humanos , Análise de Sequência de DNA/métodos
9.
Plant J ; 100(6): 1289-1305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437318

RESUMO

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated on the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed us to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light, HL versus low light, LL) enabled us to identify 10 724 nuclear genes, coding for 11 082 transcripts. Moreover, 121 and 48 genes, respectively, were found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed particular features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL versus HL provided insights into the molecular basis for metabolic rearrangement under HL versus LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway could be predicted and its upregulation upon HL exposure was observed, consistent with the increased lipid amount under HL conditions. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.


Assuntos
Aclimatação/genética , Aclimatação/efeitos da radiação , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Chlorella vulgaris/efeitos da radiação , Luz , Anotação de Sequência Molecular , Sequência de Bases , Biocombustíveis , Biomassa , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Vias Biossintéticas/efeitos da radiação , Biotecnologia , Chlorella vulgaris/crescimento & desenvolvimento , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Transferência Genética Horizontal , Genoma Mitocondrial , Genoma de Planta , Lipídeos/biossíntese , Meiose , Filogenia , Transcriptoma , Triglicerídeos/biossíntese
10.
Genes (Basel) ; 10(6)2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226847

RESUMO

Genetic markers (DNA barcodes) are often used to support and confirm species identification. Barcode sequences can be generated in the field using portable systems based on the Oxford Nanopore Technologies (ONT) MinION sequencer. However, to achieve a broader application, current proof-of-principle workflows for on-site barcoding analysis must be standardized to ensure a reliable and robust performance under suboptimal field conditions without increasing costs. Here, we demonstrate the implementation of a new on-site workflow for DNA extraction, PCR-based barcoding, and the generation of consensus sequences. The portable laboratory features inexpensive instruments that can be carried as hand luggage and uses standard molecular biology protocols and reagents that tolerate adverse environmental conditions. Barcodes are sequenced using MinION technology and analyzed with ONTrack, an original de novo assembly pipeline that requires as few as 1000 reads per sample. ONTrack-derived consensus barcodes have a high accuracy, ranging from 99.8 to 100%, despite the presence of homopolymer runs. The ONTrack pipeline has a user-friendly interface and returns consensus sequences in minutes. The remarkable accuracy and low computational demand of the ONTrack pipeline, together with the inexpensive equipment and simple protocols, make the proposed workflow particularly suitable for tracking species under field conditions.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Nanotecnologia/instrumentação , Nanoporos , Análise de Sequência de DNA/instrumentação , Fluxo de Trabalho
11.
Plant J ; 97(4): 693-714, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30422331

RESUMO

The complete or partial loss of shattering ability occurred independently during the domestication of several crops. Therefore, the study of this trait can provide an understanding of the link between phenotypic and molecular convergent evolution. The genetic dissection of 'pod shattering' in Phaseolus vulgaris is achieved here using a population of introgression lines and next-generation sequencing techniques. The 'occurrence' of the indehiscent phenotype (indehiscent versus dehiscent) depends on a major locus on chromosome 5. Furthermore, at least two additional genes are associated with the 'level' of shattering (number of shattering pods per plant: low versus high) and the 'mode' of shattering (non-twisting versus twisting pods), with all of these loci contributing to the phenotype by epistatic interactions. Comparative mapping indicates that the major gene identified on common bean chromosome 5 corresponds to one of the four quantitative trait loci for pod shattering in Vigna unguiculata. None of the loci identified comprised genes that are homologs of the known shattering genes in Glycine max. Therefore, although convergent domestication can be determined by mutations at orthologous loci, this was only partially true for P. vulgaris and V. unguiculata, which are two phylogenetically closely related crop species, and this was not the case for the more distant P. vulgaris and G. max. Conversely, comparative mapping suggests that the convergent evolution of the indehiscent phenotype arose through mutations in different genes from the same underlying gene networks that are involved in secondary cell-wall biosynthesis and lignin deposition patterning at the pod level.


Assuntos
Phaseolus/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Genoma de Planta/genética , Mutação/genética , Locos de Características Quantitativas/genética
12.
BMC Microbiol ; 18(1): 208, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526475

RESUMO

BACKGROUND: The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. RESULTS: Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. CONCLUSIONS: Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle.


Assuntos
Fagos de Salmonella/fisiologia , Salmonella enterica/virologia , Biofilmes , Fenótipo , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/fisiologia
13.
PLoS One ; 13(1): e0189993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351296

RESUMO

Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general.


Assuntos
Endófitos/genética , Fungos/patogenicidade , Genoma Bacteriano , Paenibacillus/genética , Plantas/microbiologia , Amino Açúcares/metabolismo , Metabolismo dos Carboidratos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Endófitos/metabolismo , Endófitos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Compostos Orgânicos/metabolismo , Paenibacillus/metabolismo , Paenibacillus/fisiologia , Desenvolvimento Vegetal , Sideróforos/biossíntese , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA