Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(39): 51954-51970, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136918

RESUMO

Phthalates, such as di-n-butyl phthalate (DBP) and di-isopentyl phthalate (DiPeP), are pollutants with a high potential for endocrine disruption. This study aimed to evaluate parameters of endocrine disruption in specimens of the Neotropical fish Rhamdia quelen exposed to DBP and DiPeP through their food. After 30 days of exposure, the fish were anesthetized and then euthanized, and blood, hypothalamus, liver, and gonads were collected. DBP caused statistically significant alterations in the serotoninergic system of males (5 and 25 ng/g) and females (5 ng/g) of R. quelen and it increased testosterone levels in females (25 ng/g). DiPeP significantly altered the dopaminergic system in females, reduced plasma estradiol levels (125 ng/g) and hepatic vitellogenin expression (25 ng/g), and changed the antioxidant system in gonads (125 ng/g). The results suggest that DBP and DiPeP may have different response patterns in females, with the former being androgenic and the latter being anti-estrogenic. These findings provide additional evidence regarding the molecular events involving DBP and DiPeP in the endocrine disruption potential in juvenile specimens of Rhamdia quelen.


Assuntos
Antioxidantes , Peixes-Gato , Dibutilftalato , Disruptores Endócrinos , Neurotransmissores , Vitelogeninas , Animais , Vitelogeninas/metabolismo , Vitelogeninas/sangue , Dibutilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Antioxidantes/metabolismo , Masculino , Neurotransmissores/metabolismo , Poluentes Químicos da Água/toxicidade , Ácidos Ftálicos/toxicidade , Gônadas/efeitos dos fármacos
2.
Fish Physiol Biochem ; 50(2): 477-494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112904

RESUMO

Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects. Thus, it is necessary to understand how different species respond to temperature. This study aimed to evaluate how the Neotropical catfish species Rhamdia quelen responds to temperature increases. The fish were exposed to temperatures of 25 °C (control) and 30 °C after gradual temperature increase for 7 days. After 96 h in each temperature, the fish were anesthetized, blood was collected, and after euthanasia, brain, liver, posterior kidney, gills, muscle, and gonads were collected. The gonads were used for sexing, while other tissues were used for the hematological, biochemical, genotoxic, and histopathological biomarkers analysis. Hepatic proteomic analysis with a focus on energy production was also carried out. Blood parameter changes in both sexes, including an increase in glucose in males, leukopenia in females, and genotoxicity in both sexes. Hepatic proteins related to energy production were altered in both sexes, but mainly in males. Others biomarker alterations, such as histopathological, were not observed in other tissues; however, the antioxidant system was affected differently between sexes. These showed that R. quelen juveniles, at temperatures higher than its optimum temperature such as 30 °C, has several sublethal changes, such as hematological alterations, antioxidant system activation, and energetic metabolism alteration, especially in males. Thus, short-term temperature rise can affect females and males of R. quelen differently.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Masculino , Feminino , Animais , Peixes-Gato/fisiologia , Temperatura , Antioxidantes/metabolismo , Biodiversidade , Proteômica , Eutanásia Animal , Fígado/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37973294

RESUMO

Diisopentyl phthalate (DiPeP) is a plasticizer with significant offer and application in Brazilian industries. This is attributed to its origin, which is closely linked to the refining process of sugarcane for ethanol production in the country. In this work, we developed a model for trophic exposure to environmentally relevant doses (5, 25, and 125 ng/g of DiPeP) to identify possible target tissues and toxic effects promoted by subchronic exposure to DiPeP in a Neotropical catfish species (Rhamdia quelen). After thirty days of exposure, blood, liver, kidney, brain, and muscle were collected and studied regarding DNA damage in blood cells and biochemical analyses. The kidney was the most affected organ, as in the head kidney, genotoxicity was evidenced in all groups exposed to DiPeP. Besides, the caudal kidney showed a reduction in the superoxide dismutase and glutathione peroxidase activities as well as a reduced glutathione concentration. In the liver, exposure to 125 ng/g of DiPeP increased glutathione S-transferase activity and reduced glutathione levels. In muscle, acetylcholinesterase (AChE) was reduced. However, in the brain, an increase in AChE activity was observed after the exposure to lowest doses. In contrast, a significant reduction of brain AChE activity after exposure to the highest dose was detected. The pronounced genotoxicity observed in head kidney cells is of concern, as it may compromise different functions performed by this organ (e.g., hematopoiesis, immune and endocrine functions). In our study, DiPeP proved to be a compound of environmental concern since we have evidenced its nephrotoxic and neurotoxic potential even in low doses.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Peixes-Gato/fisiologia , Antioxidantes/farmacologia , Acetilcolinesterase , Glutationa , Fígado , Dano ao DNA , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Pollut Res Int ; 30(10): 27996-28009, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385344

RESUMO

The presence of phthalates constitutes a risk to the health of aquatic environments and organisms. This work aimed to evaluate the toxic effects of di-iso-pentyl-phthalate (DiPeP) at environmentally relevant concentrations of 5, 25, and 125 µg/L in Danio rerio after subchronic exposure for 14 days. DiPeP altered the antioxidant system in the liver (125 µg/L), intestine (25 µg/L), brain, and gills in all concentrations tested. In animals exposed to 125 µg/L, DNA damage was identified in the gills. In addition, loss of cell boundary of hepatocytes, vascular congestion, necrosis in the liver, and presence of immune cells in the intestinal lumen were observed. Erythrocytic nuclear alterations in the blood occurred in animals exposed to 25 µg/L. DiPeP was quantified in muscle tissue at all exposure concentrations, appearing in a concentration-dependent manner. Contaminants such as DiPeP will still be used for a long time, mainly by industries, being a challenge for industry versus environmental health.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Ácidos Ftálicos/toxicidade , Fígado , Modelos Teóricos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA