Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(6): e2301848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870153

RESUMO

Percutaneous cryoablation is a common clinical therapy for metastatic and primary cancer. There are rare clinical reports of cryoablation inducing regression of distant metastases, known as the "abscopal" effect. Intratumoral immunoadjuvants may be able to augment the abscopal rate of cryoablation, but existing intratumoral therapies suffer from the need for frequent injections and inability to confirm target delivery, leading to poor clinical trial outcomes. To address these shortcomings, an injectable thermoresponsive gel-based controlled release formulation is developed for the FDA-approved Toll-like-receptor 7 (TLR7) agonist imiquimod ("Imigel") that forms a tumor-resident depot upon injection and contains a contrast agent for visualization under computed tomography (CT). The poly-lactic-co-glycolic acid-polyethylene glycol-poly-lactic-co-glycolic acid (PLGA-PEG-PLGA)-based amphiphilic copolymer gel's underlying micellar nature enables high drug concentration and a logarithmic release profile that is additive with the neo-antigen release from cryoablation, requiring only a single injection. Rheological testing demonstrated the thermoresponsive increase in viscosity at body temperature and radio-opacity via microCT. Its ability to significantly augment the abscopal rate of cryoablation is demonstrated in otherwise immunotherapy resistant metastatic tumors in two aggressive colorectal and breast cancer dual tumor models with an all or nothing response, responders generally demonstrating complete regression of bilateral tumors in 90-day survival studies.


Assuntos
Criocirurgia , Glicolatos , Neoplasias , Humanos , Adjuvantes Imunológicos , Meios de Contraste
2.
Optics (Basel) ; 4(2): 340-350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38075027

RESUMO

Image-guided liver biopsies can improve their success rate when combined with the optical detection of Indocyanine Green (ICG) fluorescence accumulated in tumors. Previous works used a camera coupled to a thin borescope to capture and quantify images from fluorescence emission during procedures; however, light-scattering prevented the formation of sharp images, and the time response for weakly fluorescent tumors was very low. Instead, replacing the camera with a photodiode detector shows an improved temporal resolution in a more compact and lighter device. This work presents the new design in a comparative study between both detection technologies, including an assessment of the temporal response and sensitivity to the presence of background fluorescence.

3.
Opt Lett ; 45(8): 2191-2194, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287191

RESUMO

Fluorescence tomography is a well-established methodology able to provide structural and functional information on the measured object. At optical wavelengths, the unpredictable scattering of light is often considered a problem to overcome, rather than a feature to exploit. Advances in disordered photonics have shed new light on possibilities offered by opaque materials, treating them as autocorrelation lenses able to create images and focus light. In this Letter, we propose tomography through disorder, introducing a modified Fourier-slice theorem, the cornerstone of the computed tomography, aiming to reconstruct a three-dimensional fluorescent sample hidden behind an opaque curtain.

4.
Front Neuroanat ; 13: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30760983

RESUMO

Light-sheet fluorescence microscopy (LSFM) has been present in cell biology laboratories for quite some time, mainly as custom-made systems, with imaging applications ranging from single cells (in the micrometer scale) to small organisms (in the millimeter scale). Such microscopes distinguish themselves for having very low phototoxicity levels and high spatial and temporal resolution, properties that make them ideal for a large range of applications. These include the study of cellular dynamics, in particular cellular motion which is essential to processes such as tumor metastasis and tissue development. Experimental setups make extensive use of microdevices (bioMEMS) that provide better control over the substrate environment than traditional cell culture experiments. For example, to mimic in vivo conditions, experiment biochemical dynamics, and trap, move or count cells. Microdevices provide a higher degree of empirical complexity but, so far, most have been designed to be imaged through wide-field or confocal microscopes. Nonetheless, the properties of LSFM render it ideal for 3D characterization of active cells. When working with microdevices, confocal microscopy is more widespread than LSFM even though it suffers from higher phototoxicity and slower acquisition speeds. It is sometimes possible to illuminate with a light-sheet microdevices designed for confocal microscopes. However, these bioMEMS must be redesigned to exploit the full potential of LSFM and image more frequently on a wider scale phenomena such as motion, traction, differentiation, and diffusion of molecules. The use of microdevices for LSFM has extended beyond cell tracking studies into experiments regarding cytometry, spheroid cultures and lab-on-a-chip automation. Due to light-sheet microscopy being in its early stages, a setup of these characteristics demands some degree of optical expertise; and designing three-dimensional microdevices requires facilities, ingenuity, and experience in microfabrication. In this paper, we explore different approaches where light-sheet microscopy can achieve single-cell and subcellular resolution within microdevices, and provide a few pointers on how these experiments may be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA