Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(11): e202400093, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38482564

RESUMO

Inhibition of poly (ADP-ribose) polymerase-1 (PARP1), a DNA repair enzyme, has proven to be a successful strategy for the treatment of various cancers. With the appropriate selection conditions and protein design, DNA-encoded library (DEL) technology provides a powerful avenue to identify small molecules with the desired mechanism of action towards a target of interest. However, DNA-binding proteins, such as PARP1, can be challenging targets for DEL screening due to non-specific protein-DNA interactions. To overcome this, we designed and screened a PARP1 catalytic domain construct without the autoinhibitory helical domain. This allowed us to interrogate an active, functionally-relevant form of the protein resulting in the discovery of novel isoindolinone PARP1 inhibitors with single-digit nanomolar potency. These inhibitors also demonstrated little to no PARP1-DNA trapping, a property that could be advantageous in the clinic.


Assuntos
DNA , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , DNA/química , DNA/metabolismo , Relação Estrutura-Atividade , Descoberta de Drogas , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Relação Dose-Resposta a Droga , Isoindóis/química , Isoindóis/farmacologia , Isoindóis/síntese química , Domínio Catalítico
2.
ACS Chem Neurosci ; 14(6): 1080-1094, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812145

RESUMO

Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/ß-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3ß paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3ß with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3ß and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.


Assuntos
Quinase 3 da Glicogênio Sintase , Proteínas Serina-Treonina Quinases , Glicogênio Sintase Quinase 3 beta , Fosforilação , Proliferação de Células/fisiologia
3.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538993

RESUMO

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Antígeno B7-2
4.
J Med Chem ; 64(20): 15402-15419, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34653340

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor 3. This effort led to the discovery of 32, a potent (cell IC50 = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Clu = 1.6/56 L/h/kg and Kp,uu = 0.46) for proof-of-pharmacology studies. Specifically, the ability of 32 to inhibit ASK1 in the central nervous system (CNS) was evaluated in a human tau transgenic (Tg4510) mouse model exhibiting elevated brain inflammation. In this study, transgenic animals treated with 32 (at 3, 10, and 30 mg/kg, BID/PO for 4 days) showed a robust reduction of inflammatory markers (e.g., IL-1ß) in the cortex, thus confirming inhibition of ASK1 in the CNS.


Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-Atividade
5.
ACS Med Chem Lett ; 12(7): 1124-1129, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267882

RESUMO

Autotaxin (ATX) is a lysophospholipase D that is the main enzyme responsible for generating LPA in body fluids. Although ATX was isolated from a conditioned medium of melanoma cells, later it was discovered to play a critical role in vascular and neuronal development. ATX has also been implicated in primary brain tumor, fibrosis, and rheumatoid arthritis, as well as neurological diseases such as multiple sclerosis, Alzheimer's disease, and neuropathic pain. As ATX and LPA levels are increased upon neuronal injury, a selective ATX inhibitor could provide a new approach to treat neuropathic pain. Herein we describe the discovery of a novel series of nonzinc binding reversible ATX inhibitors, particularly a potent, selective, orally bioavailable, brain-penetrable tool compound BIO-32546, as well as its synthesis, X-ray cocrystal structure, pharmacokinetics, and in vivo efficacy.

6.
Bioorg Med Chem ; 44: 116275, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34314938

RESUMO

Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacocinética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
7.
J Med Chem ; 64(9): 6358-6380, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33944571

RESUMO

Structural analysis of the known NIK inhibitor 3 bound to the kinase domain of TTBK1 led to the design and synthesis of a novel class of azaindazole TTBK1 inhibitors exemplified by 8 (cell IC50: 571 nM). Systematic optimization of this series of analogs led to the discovery of 31, a potent (cell IC50: 315 nM) and selective TTBK inhibitor with suitable CNS penetration (rat Kp,uu: 0.32) for in vivo proof of pharmacology studies. The ability of 31 to inhibit tau phosphorylation at the disease-relevant Ser 422 epitope was demonstrated in both a mouse hypothermia and a rat developmental model and provided evidence that modulation of this target may be relevant in the treatment of Alzheimer's disease and other tauopathies.


Assuntos
Encéfalo/metabolismo , Desenho de Fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas tau/metabolismo , Animais , Humanos , Indazóis/química , Indazóis/metabolismo , Indazóis/farmacologia , Camundongos , Terapia de Alvo Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Ratos
8.
Cell Mol Neurobiol ; 41(4): 669-685, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32424773

RESUMO

Tau-tubulin kinase 1 (TTBK1) is a CNS-specific, kinase that has been implicated in the pathological phosphorylation of tau in Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD). TTBK1 is a challenging therapeutic target because it shares a highly conserved catalytic domain with its homolog, TTBK2, a ubiquitously expressed kinase genetically linked to the disease spinocerebellar ataxia type 11. The present study attempts to elucidate the functional distinctions between the TTBK isoforms and increase our understanding of them as distinct targets for the treatment of neurodegenerative disease. We demonstrate that in cortical neurons, TTBK1, not TTBK2, is the isoform responsible for tau phosphorylation at epitopes enriched in tauopathies such as Serine 422. In addition, although our elucidation of the crystal structure of the TTBK2 kinase domain indicates almost identical structural similarity with TTBK1, biochemical and cellular assays demonstrate that the enzymatic activity of these two proteins is regulated by a combination of unique extra-catalytic sequences and autophosphorylation events. Finally, we have identified an unbiased list of neuronal interactors and phosphorylation substrates for TTBK1 and TTBK2 that highlight the unique cellular pathways and functional networks that each isoform is involved in. This data address an important gap in knowledge regarding the implications of targeting TTBK kinases and may prove valuable in the development of potential therapies for disease.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Córtex Cerebral/patologia , Epitopos/metabolismo , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteômica , Serina/metabolismo , Homologia Estrutural de Proteína , Proteínas tau/metabolismo
9.
J Med Chem ; 63(21): 12526-12541, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32696648

RESUMO

Autoreactive B cell-derived antibodies form immune complexes that likely play a pathogenic role in autoimmune diseases. In systemic lupus erythematosus (SLE), these antibodies bind Fc receptors on myeloid cells and induce proinflammatory cytokine production by monocytes and NETosis by neutrophils. Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that signals downstream of Fc receptors and plays a transduction role in antibody expression following B cell activation. Given the roles of BTK in both the production and sensing of autoreactive antibodies, inhibitors of BTK kinase activity may provide therapeutic value to patients suffering from autoantibody-driven immune disorders. Starting from an in-house proprietary screening hit followed by structure-based rational design, we have identified a potent, reversible BTK inhibitor, BIIB068 (1), which demonstrated good kinome selectivity with good overall drug-like properties for oral dosing, was well tolerated across preclinical species at pharmacologically relevant doses with good ADME properties, and achieved >90% inhibition of BTK phosphorylation (pBTK) in humans.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Administração Oral , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antígenos T-Independentes/química , Antígenos T-Independentes/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Sítios de Ligação , Domínio Catalítico , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Ratos , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 11(4): 485-490, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292554

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is a key mediator in the apoptotic and inflammatory cellular stress response. To investigate the therapeutic value of modulating this pathway in neurological disease, we have completed medicinal chemistry studies to identify novel CNS-penetrant ASK1 inhibitors starting from peripherally restricted compounds reported in the literature. This effort led to the discovery of 21, a novel ASK1 inhibitor with good potency (cell IC50 = 138 nM), low clearance (rat Cl/Clu = 0.36/6.7 L h-1 kg-1) and good CNS penetration (rat K p,uu = 0.38).

11.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 103-108, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133995

RESUMO

Tau proteins play an important role in the proper assembly and function of neurons. Hyperphosphorylation of tau by kinases such as tau tubulin kinase (TTBK) has been hypothesized to cause the aggregation of tau and the formation of neurofibrillary tangles (NFTs) that lead to the destabilization of microtubules, thereby contributing to neurodegenerative diseases such as Alzheimer's disease (AD). There are two TTBK isoforms with highly homologous catalytic sites but with distinct tissue distributions, tau phosphorylation patterns and loss-of-function effects. Inhibition of TTBK1 reduces the levels of NFT formation involved in neurodegenerative diseases such as AD, whereas inhibition of TTBK2 may lead to the movement disorder spinocerebellar ataxia type 11 (SCA11). Hence, it is critical to obtain isoform-selective inhibitors. Structure-based drug design (SBDD) has been used to design highly potent and exquisitely selective inhibitors. While structures of TTBK1 have been reported in the literature, TTBK2 has evaded structural characterization. Here, the first crystal structure of the TTBK2 kinase domain is described. Furthermore, the crystal structure of human TTBK2 in complex with a small-molecule inhibitor has successfully been determined to elucidate the structural differences in protein conformations between the two TTBK isoforms that could aid in SBDD for the design of inhibitors that selectively target TTBK1 over TTBK2.


Assuntos
Domínio Catalítico/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Difração de Raios X/métodos , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo
12.
Bioorg Med Chem Lett ; 30(4): 126852, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31898999

RESUMO

Nrf2 is a transcription factor regulating expression of the Phase II Antioxidant Response and plays an important role in neuroprotection and detoxification. Nrf2 activation is inhibited by interaction with Keap1. Covalent Keap1 inhibitors such as dimethyl fumarate (DMF) and RTA-408 are either on the market or in late stage clinical trials which implies potential benefit of Nrf2 activation. Activation of Nrf2 by disrupting Nrf2-Keap1 interaction through a non-covalent small molecule is an attractive approach with the promise of greater selectivity. However, there are no known non-covalent Nrf2 activators with acceptable pharmacokinetic properties to test the hypothesis in vivo. Based on our early reported work, using structural-based design, followed by extensive SAR exploration, we have identified a novel series of non-covalent Nrf2 activators, with sub-nanomolar binding affinity on Keap1 and single digit nanomolar activity in an astrocyte assay. A representative analog shows excellent oral PK and good Nrf2-dependent gene inductions in kidney. These results provide a peripheral in vivo tool compound to validate the biology of non-covalent activation of Nrf2.


Assuntos
Desenho de Fármacos , Fator 2 Relacionado a NF-E2/agonistas , Administração Oral , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/metabolismo , Meia-Vida , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Domínios e Motivos de Interação entre Proteínas , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
13.
J Med Chem ; 62(23): 10740-10756, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710475

RESUMO

Structural analysis of a known apoptosis signal-regulating kinase 1 (ASK1) inhibitor bound to its kinase domain led to the design and synthesis of the novel macrocyclic inhibitor 8 (cell IC50 = 1.2 µM). The profile of this compound was optimized for CNS penetration following two independent strategies: a rational design approach leading to 19 and a parallel synthesis approach leading to 26. Both analogs are potent ASK1 inhibitors in biochemical and cellular assays (19, cell IC50 = 95 nM; 26, cell IC50 = 123 nM) and have moderate to low efflux ratio (ER) in an MDR1-MDCK assay (19, ER = 5.2; 26, ER = 1.5). In vivo PK studies revealed that inhibitor 19 had moderate CNS penetration (Kpuu = 0.17) and analog 26 had high CNS penetration (Kpuu = 1.0).


Assuntos
MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Animais , Encéfalo/metabolismo , Desenho de Fármacos , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Compostos Macrocíclicos/química , Estrutura Molecular , Ratos
14.
Bioorg Med Chem ; 27(13): 2905-2913, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31138459

RESUMO

Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Inibidores de Proteínas Quinases/farmacologia
15.
Sci Rep ; 8(1): 13438, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194389

RESUMO

Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aß-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Espinhas Dendríticas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Sinapses/metabolismo , Animais , Encéfalo/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Espinhas Dendríticas/patologia , Desenho de Fármacos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Domínios PDZ , Receptores de AMPA/metabolismo , Sinapses/patologia
16.
Bioorg Med Chem Lett ; 28(10): 1964-1971, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636220

RESUMO

Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines.


Assuntos
Proteína Quinase C-theta/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Concentração Inibidora 50 , Interleucina-2/metabolismo , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-Atividade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
17.
Protein Sci ; 27(3): 672-680, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280296

RESUMO

The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1-GluA2 protein-protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1-GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure-aided drug design but were unsuccessful in producing a co-crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co-crystal structure of the PDZ domain of PICK1 bound to BIO124.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Receptores de AMPA/metabolismo , Relação Estrutura-Atividade
18.
Protein Sci ; 26(2): 152-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27727493

RESUMO

Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.


Assuntos
Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína
19.
BMC Struct Biol ; 16(1): 7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246200

RESUMO

BACKGROUND: The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. RESULTS: We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and ß. CONCLUSION: The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.


Assuntos
Benzoxazinas/química , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Benzoxazinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Simulação de Dinâmica Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
20.
Bioorg Med Chem Lett ; 26(10): 2459-2463, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080181

RESUMO

RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series.


Assuntos
Hidrocarbonetos Fluorados/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Relação Estrutura-Atividade , Sulfonamidas/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Hidrocarbonetos Fluorados/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA