Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 103(6): e14569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877369

RESUMO

Staphylococcus aureus has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with pbp4 deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of S. aureus osteomyelitis. Moreover, PBP4 has recently been found to modulate S. aureus resistance to ß-lactam antibiotics. As such, small molecule inhibitors of S. aureus PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea 1 targets PBP4. Herein, we describe a structure-activity relationship (SAR) study on 1. Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to 1.


Assuntos
Antibacterianos , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas , Staphylococcus aureus , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ureia/química , Ureia/farmacologia , Ureia/análogos & derivados , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores
2.
Biochemistry ; 63(11): 1369-1375, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38742921

RESUMO

Lysine specific demethylase-1 (LSD1) serves as a regulator of transcription and represents a promising epigenetic target for anticancer treatment. LSD1 inhibitors are in clinical trials for the treatment of Ewing's sarcoma (EWS), acute myeloid leukemia, and small cell lung cancer, and the development of robust inhibitors requires accurate methods for probing demethylation, potency, and selectivity. Here, the inhibition kinetics on the H3K4me2 peptide and nucleosome substrates was examined, comparing the rates of demethylation in the presence of reversible [CC-90011 (PD) and SP-2577 (SD)] and irreversible [ORY-1001 (ID) and tranylcypromine (TCP)] inhibitors. Inhibitors were also subject to viability studies in three human cell lines and Western blot assays to monitor H3K4me2 nucleosome levels in EWS (TC-32) cells, enabling a correlation of drug potency, inhibition in vitro, and cell-based studies. For example, SP-2577, a drug in clinical trials for EWS, inhibits activity on small peptide substrates (Ki = 60 ± 20 nM) using an indirect coupled assay but does not inhibit demethylation on H3K4me2 peptides or nucleosomes using direct Western blot approaches. In addition, the drug has no effect on H3K4me2 levels in TC-32 cells. These data show that SP-2577 is not an LSD1 enzyme inhibitor, although the drug may function independent of demethylation due to its cytotoxic selectivity in TC-32 cells. Taken together, this work highlights the pitfalls of using coupled assays to ascribe a drug's mode of action, emphasizes the use of physiologically relevant substrates in epigenetic drug targeting strategies, and provides insight into the development of substrate-selective inhibitors of LSD1.


Assuntos
Antineoplásicos , Histona Desmetilases , Nucleossomos , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Humanos , Nucleossomos/metabolismo , Nucleossomos/efeitos dos fármacos , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Linhagem Celular Tumoral , Histonas/metabolismo , Tranilcipromina/farmacologia , Especificidade por Substrato , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA