Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(51): 77992-78008, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35688985

RESUMO

In this work, the effective adsorption and the subsequent photodegradation activity, of TiO2 brookite nanoparticles, for the removal of anionic dyes, namely, Alizarin Red S (ARS) and Bromocresol Green (BCG) were studied. Batch adsorption experiments were conducted to investigate the effect of both dyes' concentration, contact time, and temperature. Photodegradation experiments for the adsorbed dyes were achieved using ultraviolet light illumination (6 W, λ = 365 nm). The single adsorption isotherms were fitted to the Sips model. The binary adsorption isotherms were fitted using the Extended-Sips model. The results of adsorption isotherms showed that the estimated maximum adsorption uptakes in the binary system were around 140 mg g-1 and 45.5 mg g-1 for ARS and BCG, respectively. In terms of adsorption kinetics, the uptake toward ARS was faster than BCG molecules in which the equilibrium was obtained in 7 min for ARS, while it took 180 min for BCG. Moreover, the thermodynamics results showed that the adsorption process was spontaneous for both anionic dyes. All these macroscopic competitive adsorption results indicate high selectivity toward ARS molecules in the presence of BCG molecules. Additionally, the TiO2 nanoparticles were successfully regenerated using UV irradiation. Moreover, molecular dynamics computational modeling was performed to understand the molecules' optimum coordination, TiO2 geometry, adsorption selectivity, and binary solution adsorption energies. The simulation energies distribution exhibits lower adsorption energies for ARS in the range from - 628 to - 1046 [Formula: see text] for both single and binary systems. In addition to that, the water adsorption energy was found to be between - 42 and - 209 [Formula: see text].


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Verde de Bromocresol , Simulação de Dinâmica Molecular , Vacina BCG , Corantes , Cinética , Água , Concentração de Íons de Hidrogênio , Termodinâmica , Soluções
2.
RSC Adv ; 9(61): 35483-35498, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528094

RESUMO

The competitive adsorption of cationic and anionic model molecules; methylene blue (MB) and acid red 88 (AR88), respectively, in aqueous solutions onto NiO and/or MgO SBNs was studied. Adsorption isotherms, kinetics and pH effect were investigated in batch modes. Computational modeling was conducted on Acclerys Material Studio for MB and AR88 adsorption. pH study showed that the adsorption is strongly pH dependent, increases for MB while decreases for AR88 with increasing the pH from 4 to 11. Isotherm studies revealed that the Sips model was the best fit for both molecules in single cases, and thus the Extended-Sips model for the binary systems. The kinetics for the binary systems were well-described by the external mass transfer model; thus, film diffusion is the most dominant in the adsorption of both organic onto the SBNs. The adsorption uptakes in binary systems exceed 130 mg g-1 for AR88 (167.7 MgO-SBNs, 132.93 NiO-SBNs, and 178.5 mg g-1 NiO-MgO-SBN), while it reached an uptake of 76.2 MgO-SBNs, 81.5 NiO-SBNs, and 94.7 mg g-1 NiO-MgO-SBNs for MB within the time needed to reach equilibrium (10 min). The adsorption of these two molecules in binary systems showed a synergistic effect onto the three types of SBNs, that enhanced the adsorption uptakes. Computational modeling confirmed the synergistic effect, the adsorption energy of binary systems was lower than that in single systems. Regeneration study was conducted over four adsorption cycles to confirm the sustainability of SBNs. They were stable under thermal oxidation at 400 °C, without any impact on the adsorption capacity.

3.
RSC Adv ; 8(4): 1791-1802, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542567

RESUMO

Over the last few years, nanoparticles have been used as thermal enhancement agents in many heat transfer based fluids to improve the thermal conductivity of the fluids. Recently, many experiments have been carried out to prepare different types of nanofluids (NFs) showing a tremendous increase in thermal conductivity of the base fluids with the addition of a small amount of nanoparticles. However, little experimental work has been proposed to calculate the flow behaviour and heat transfer of nanofluids and the exact mechanism for the increase in effective thermal conductivity in heat exchangers. This study mainly focuses on the development of nanomaterial composites by incorporating copper oxide nanoparticles (CuO) onto the surfaces of carbon nanotubes (CNTs). The CNT-CuO nanocomposite was used to prepare water-based heat transfer NFs. The morphological surfaces and loading contents of the CNT-CuO nanocomposite were characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) while the physical and thermal properties of the water-based nanofluids were characterized using differential scanning calorimetry (DSC), the Mathis TCi system and a viscosity meter for measuring the heat capacity, thermal conductivity and viscosity of the synthesized NFs, respectively. The heat transfer and the pressure drop studies of the NFs were conducted by a horizontal steel tube counter-flow heat exchanger under turbulent flow conditions. The experimental results showed that the developed NFs with different concentrations of modified CNTs (0.01, 0.05 and 0.1 wt%) have yielded a significant increase in specific heat capacity (102% higher than pure water) and thermal conductivity (26% higher than pure water) even at low concentration. The results also revealed that the heat rate of the NF was higher than that of the base liquid (water) and increased with increasing the concentration of nanoparticles. Furthermore, no significant effect of the nanoparticles on the pressure drop of the system was observed.

4.
Phys Chem Chem Phys ; 18(9): 6839-49, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878274

RESUMO

Using Quinolin-65 (Q-65) as a model-adsorbing compound for polar heavy hydrocarbons, the nanosize effect of NiO nanoparticles on the adsorption of Q-65 was investigated. Different-sized NiO nanoparticles with sizes between 5 and 80 nm were prepared by the controlled thermal dehydroxylation of Ni(OH)2. The properties of the nanoparticles were characterized using XRD, BET, FTIR, HRTEM and TGA. The effects of the nanosize on the textural properties, the shape and the morphology were studied. The adsorption of Q-65 molecules onto different-sized nanoparticles was tested in toluene-based solutions. On a normalized surface area basis, the number of Q-65 molecules adsorbed per nm(2) of the NiO surface was the highest for NiO nanoparticles of size 80 nm, while that for 5 nm sized NiO nanoparticles was the lowest. Excitingly, the adsorption capacity of other NiO sizes varied from loading suggesting different adsorption behavior, which exhibits the significance of textural properties during the adsorption of Q-65. Computational modeling of the interaction between the Q-65 molecule and the NiO nanoparticle surface was carried out to get more understanding of its adsorption behavior. A number of factors contributing to the enhanced adsorption capacity of nanoscale NiO were determined. These include surface reactivity, topology, morphology and textural properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA