Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(5-1): 053202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134285

RESUMO

In an experiment performed with a high-intensity and high-energy laser system, α-particle production in proton-boron reaction by using a laser-driven proton beam was measured. α particles were observed from the front and also from the rear side, even after a 2-mm-thick boron target. The data obtained in this experiment have been analyzed using a sequence of numerical simulations. The simulations clarify the mechanisms of α-particle production and transport through the boron targets. α-particle energies observed in the experiment and in the simulation reach 10-20 MeV through energy transfer from 20-30 MeV energy incident protons. Despite the lower cross sections for protons with energy above the sub-MeV resonances in the proton-boron reactions, 10^{8}-10^{9}α particles per steradian have been detected.

2.
Rev Sci Instrum ; 90(8): 083303, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472608

RESUMO

The Time-of-Flight (TOF) technique coupled with semiconductorlike detectors, as silicon carbide and diamond, is one of the most promising diagnostic methods for high-energy, high repetition rate, laser-accelerated ions allowing a full on-line beam spectral characterization. A new analysis method for reconstructing the energy spectrum of high-energy laser-driven ion beams from TOF signals is hereby presented and discussed. The proposed method takes into account the detector's working principle, through the accurate calculation of the energy loss in the detector active layer, using Monte Carlo simulations. The analysis method was validated against well-established diagnostics, such as the Thomson parabola spectrometer, during an experimental campaign carried out at the Rutherford Appleton Laboratory (UK) with the high-energy laser-driven protons accelerated by the VULCAN Petawatt laser.

3.
Phys Med ; 54: 166-172, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30076107

RESUMO

The main purpose of this paper is to quantitatively study the possibility of delivering dose distributions of clinical relevance with laser-driven proton beams. A Monte Carlo application has been developed with the Geant4 toolkit, simulating the ELIMED (MEDical and multidisciplinary application at ELI-Beamlines) transport and dosimetry beam line which is being currently installed at the ELI-Beamlines in Prague (CZ). The beam line will be used to perform irradiations for multidisciplinary studies, with the purpose of demonstrating the possible use of optically accelerated ion beams for therapeutic purposes. The ELIMED Geant4-based application, already validated against reference transport codes, accurately simulates each single element of the beam line, necessary to collect the accelerated beams and to select them in energy. Transversal dose distributions at the irradiation point have been studied and optimized to try to quantitatively answer the question if such kind of beam lines, and specifically the systems developed for ELIMED in Prague, will be actually able to transport ion beams not only for multidisciplinary applications, such as pitcher-catcher nuclear reactions (e.g. neutrons), PIXE analysis for cultural heritage and space radiation, but also for delivering dose patterns of clinical relevance in a future perspective of possible medical applications.


Assuntos
Lasers , Método de Monte Carlo , Aceleradores de Partículas , Terapia com Prótons/instrumentação , Doses de Radiação , Radiometria , Dosagem Radioterapêutica
4.
Sci Rep ; 8(1): 1141, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348437

RESUMO

Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/uso terapêutico , Terapia Combinada/métodos , Nêutrons , Neoplasias da Próstata/radioterapia , Terapia com Prótons , Terapia com Prótons/métodos , Partículas alfa/uso terapêutico , Animais , Boroidretos/química , Boro/química , Terapia por Captura de Nêutron de Boro/instrumentação , Isótopos de Carbono/química , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Aberrações Cromossômicas/efeitos da radiação , Terapia Combinada/instrumentação , Ciclotrons , Dano ao DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , DNA de Neoplasias/efeitos da radiação , Relação Dose-Resposta à Radiação , Corantes Fluorescentes/química , Humanos , Cariotipagem , Transferência Linear de Energia , Masculino , Neoplasias da Próstata/patologia , Terapia com Prótons/instrumentação , Eficiência Biológica Relativa , Compostos de Sulfidrila/química
5.
Radiat Prot Dosimetry ; 170(1-4): 318-21, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26979806

RESUMO

In laser-driven acceleration, ultra-short and intense laser pulses are focussed on targets to generate beams of ionising radiation. One of the most important issues to be addressed is personal monitoring. While traditional dosemeters were designed primarily for measurements in continuous fields, dosemeters for laser laboratories must be capable of working in pulsed fields of pulse length below 1 ps, in a single-shot regime up to the repetition rate of 1 kHz. Responses of conventional dosemeters (films, polyallyldiglycol carbonate, electronic personal dosemeter) to proton bunches of up to 30 MeV energy produced by South Korean PW laser system at the Advanced Photonics Research Institute, Gwangju Institute of Science and Technology were studied, both by means of Monte Carlo simulations and experimentally.


Assuntos
Dosimetria Fotográfica/instrumentação , Prótons , Doses de Radiação , Dosímetros de Radiação , Monitoramento de Radiação/instrumentação , Calibragem , Carbonatos/química , Simulação por Computador , Dosimetria Fotográfica/métodos , Glicóis/química , Humanos , Lasers , Método de Monte Carlo , Plásticos , Monitoramento de Radiação/métodos , Radiação Ionizante , Reprodutibilidade dos Testes , República da Coreia
6.
Rev Sci Instrum ; 85(1): 013302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517754

RESUMO

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.

7.
Rev Sci Instrum ; 85(12): 123105, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554270

RESUMO

Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

8.
Rev Sci Instrum ; 83(2): 02B111, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380268

RESUMO

A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

9.
Rev Sci Instrum ; 83(2): 02B302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380281

RESUMO

The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

10.
Rev Sci Instrum ; 83(2): 02B307, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380286

RESUMO

An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

11.
Rev Sci Instrum ; 83(2): 02B310, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380289

RESUMO

At intensities of the order of 10(10) W∕cm(2), ns pulsed lasers can be employed to ablate solid bulk targets in order to produce high emission of ions at different charge state and kinetic energy. A special interest is devoted to the production of protons with controllable energy and current from a roto-translating target irradiated in repetition rate at 1-10 Hz by a Nd:Yag pulsed laser beam. Different hydrogenated targets based on polymers and hydrates were irradiated in high vacuum. Special nanostrucutres can be embedded in the polymers in order to modify the laser absorption properties and the amount of protons to be accelerated in the plasma. For example, carbon nanotubes may increase the laser absorption and the hydrogen absorption to generate high proton yields from the plasma. Metallic nanostrucutres may increase the electron density of the plasma and the kinetic energy of the accelerated protons. Ion collectors, ion energy analyzer, and mass spectrometers, used in time-of-flight configuration, were employed to characterize the ion beam properties. A comparison with traditional proton ion source is presented and discussed.


Assuntos
Lasers , Prótons , Radiometria/instrumentação , Hidrogênio/química , Temperatura
12.
Rev Sci Instrum ; 83(2): 02B315, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380294

RESUMO

The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10(16) W∕cm(2). The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.


Assuntos
Hidrogênio/química , Lasers , Prótons , Radiometria/instrumentação , Gases em Plasma/química , Análise Espectral
13.
Phys Rev Lett ; 109(23): 234801, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368211

RESUMO

Nanostructured thin plastic foils have been used to enhance the mechanism of laser-driven proton beam acceleration. In particular, the presence of a monolayer of polystyrene nanospheres on the target front side has drastically enhanced the absorption of the incident 100 TW laser beam, leading to a consequent increase in the maximum proton energy and beam charge. The cutoff energy increased by about 60% for the optimal spheres' diameter of 535 nm in comparison to the planar foil. The total number of protons with energies higher than 1 MeV was increased approximately 5 times. To our knowledge this is the first experimental demonstration of such advanced target geometry. Experimental results are interpreted and discussed by means of 2(1/2)-dimensional particle-in-cell simulations.

14.
Rev Sci Instrum ; 81(2): 02A504, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192359

RESUMO

Emission of carbon currents reaching values up to 2 A/cm(2) at a distance of 1 m from the laser ion source driven by the subnanosecond Prague Asterix Laser System operated at a fundamental wavelength of 1315 nm is reported. Graphite targets were exposed to intensities up to 5x10(16) W/cm(2) varying both the laser energy and the position of the laser beam focus with respect to the target surface. The maximum energy gain of carbon ions was approximately = 1 MeV/u. At high laser intensities the shape of time-of-flight spectra is also formed by plasma outbursts, whose growth correlates with the oscillatory self-focusing of the laser beam.

15.
Rev Sci Instrum ; 81(2): 02A506, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192361

RESUMO

Ultrafast plasma light ion streams have been produced using the 300 ps, kJ-class iodine laser, operating at PALS Centre in Prague. Ion detection was performed through standard ion collectors (IC) in time-of-flight configuration (TOF), shielded by thin metallic absorbers. This new diagnostics technique has been theoretically studied and experimentally tested in order to cut the long photopeak contribution and to analyze the ultrafast particle signal. Processing the obtained experimental IC-TOF data, including deconvolution processes of the TOF signals, UV/soft-x-ray photopeak absorption, and ion transmission calculations for different metallic filters, is shown. Mainly amorphous carbon (graphite) targets have been irradiated in order to limit the maximum number of ion charge states and to focus our study on demonstrating the validity of the proposed investigation technique. Maximum ion energy and acceleration gradient estimations as a function of the laser energy and focal spot diameter are reported.

16.
Rev Sci Instrum ; 81(2): 02A508, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192363

RESUMO

A pulsed neodymium-doped yttrium aluminum garnet laser ion source has been used as proton beams generator. The laser wavelength is 1064 nm, the pulse duration is 9 ns and the intensity reaches 10(10) W/cm(2). Laser irradiates hydrogenated polymers targets located in a chamber at 10(-7) mbar. The ions are post-accelerated in a suitable chamber by 30 kV of voltage between the target, positively biased, and the following ground electrode. The extracted beams is characterized through a time-of-flight technique. Possible applications to the field of nuclear physics, such as nuclear excitation and de-excitations, nuclear reactions and nuclear fusion, will be presented and discussed.

17.
Rev Sci Instrum ; 79(2 Pt 2): 02C715, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315268

RESUMO

Results of recent studies on highly charged Au ion generation, using the intense long pulses of the PALS high power iodine laser (lambda=1.315 microm, E(L)=800 J400 ps), operating under variable experimental conditions (1omega, 3omega, varying target thickness and changing focus positions), are presented. Both the ion collectors and the ion electrostatic analyzers were applied for the identification of ions in a large distance from the target. The time-of-flight collector signals were treated by a means of peak deconvolution assuming a shifted Maxwell-Boltzmann form of the constituent ion current peaks. Attention was paid to the influence of pulse precursor, which becomes evident, especially, if using thinner targets and 1omega. The results for 3omega point to the presence of several groups of ions with the highest recorded charge state Au(53+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA