Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569966

RESUMO

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Assuntos
Fertilizantes , Substâncias Húmicas , Solo , Zea mays , Substâncias Húmicas/análise , Solo/química , Zea mays/crescimento & desenvolvimento , República da Coreia , Agricultura/métodos
2.
Geoderma ; 443: 116831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38533356

RESUMO

Soils are a major player in the global carbon (C) cycle and climate change by functioning as a sink or a source of atmospheric carbon dioxide (CO2). The largest terrestrial C reservoir in soils comprises two main pools: organic (SOC) and inorganic C (SIC), each having distinct fates and functions but with a large disparity in global research attention. This study quantified global soil C research trends and the proportional focus on SOC and SIC pools based on a bibliometric analysis and raise the importance of SIC pools fully underrepresented in research, applications, and modeling. Studies on soil C pools started in 1905 and has produced over 47,000 publications (>1.7 million citations). Although the global C stocks down to 2 m depth are nearly the same for SOC and SIC, the research has dominantly examined SOC (>96 % of publications and citations) with a minimal share on SIC (<4%). Approximately 40 % of the soil C research was related to climate change. Despite poor coverage and publications, the climate change-related research impact (citations per document) of SIC studies was higher than that of SOC. Mineral associated organic carbon, machine learning, soil health, and biochar were the recent top trend topics for SOC research (2020-2023), whereas digital soil mapping, soil properties, soil acidification, and calcite were recent top trend topics for SIC. SOC research was contributed by 151 countries compared to 88 for SIC. As assessed by publications, soil C research was mainly concentrated in a few countries, with only 9 countries accounting for 70 % of the research. China and the USA were the major producers (45 %), collaborators (37 %), and funders of soil C research. SIC is a long-lived soil C pool with a turnover rate (leaching and recrystallization) of more than 1000 years in natural ecosystems, but intensive agricultural practices have accelerated SIC losses, making SIC an important player in global C cycle and climate change. The lack of attention and investment towards SIC research could jeopardize the ongoing efforts to mitigate climate change impacts to meet the 1.5-2.0 °C targets under the Paris Climate Agreement of 2015. This bibliographic study calls to expand the research focus on SIC and including SIC fluxes in C budgets and models, without which the representation of the global C cycle is incomplete.

3.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273583

RESUMO

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Assuntos
Floresta Úmida , Solo , Solo/química , Fósforo , Ecossistema , Conservação dos Recursos Naturais , Florestas
4.
J Environ Qual ; 53(1): 23-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37801333

RESUMO

Struvite (MgNH4 PO4 ·6H2 O) is a wastewater-derived phosphorus (P) fertilizer with potential to reduce P as well as nitrogen (N) losses due to its low water solubility. To test hypothesized lower P and N losses from struvite relative to monoammonium phosphate (MAP), field experiments with a randomized-complete block design were conducted in central (Urbana) Illinois on an Endoaquoll-Argiudoll complex and in southern (Ewing) Illinois on a Fragiudalf-Hapludalf complex. Fertilizer was broadcast applied in the fall prior to spring planting of soybean (Glycine max L.) at a maintenance rate of 29.5 kg P ha-1 (Urbana) and 22.0 kg P ha-1 (Ewing). In the spring, soil extractable N and Mehlich 3-P at 0- to 15-cm and 15- to 35-cm depths were determined, and leached N and P were estimated using fall-installed ion-exchangeable resin (IER) lysimeters. At Urbana, soil extractable nitrate-N was higher under MAP than struvite at 0- to 15-cm depth. At Ewing, soil Mehlich 3-P under struvite was lower than MAP at both depths. At Urbana, leached P was 10-fold lower, and leached N was twofold lower under struvite than MAP. Soybean yields were similar between MAP and struvite at Urbana (4.1-4.3 Mg ha-1 ) and Ewing (3.2-3.5 Mg ha-1 ), but at Ewing yields were 23% higher under struvite compared to the P-unfertilized control. Off-season yield-scaled P and N losses under struvite were lower than MAP by 51% at Urbana and by 10% at Ewing. Our results support the hypothesized potential of struvite to reduce nutrient losses while meeting crop P needs. Additionally, we identify disproportionally greater reductions in N leaching and yield-scaled N losses by substituting struvite for MAP in fall applications, indicating that struvite can offer greater relative benefits for N loss reduction than P loss reduction.


Assuntos
Nitrogênio , Fosfatos , Fósforo , Estruvita , Nitrogênio/análise , Fertilizantes/análise , Solo , Agricultura
5.
Environ Sci Technol ; 57(51): 21535-21539, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38086081

RESUMO

Phosphorus (P) inputs to the biosphere have quadrupled in less than a century due to intensification of rock phosphate mining and the use of P fertilizers for crop production. Accumulation of P in soils can increase P transfers across the soil-water continuum that impair aquatic ecosystem function and water resource quality for society. However, what this accumulated P is called, and subsequent connotations of magnitude versus mechanism at pedon versus watershed scale, varies in the literature. We argue that the two commonly used terms of "residual" and "legacy" P, though often used interchangeably, hold distinct meanings and connotations. Tracing the historical origins and trajectories of these terms reveals that "residual P" refers to the magnitude of fertilizer P that remains in the soil after crop harvest, whereas "legacy P" refers to the mechanism of P transfer across the watershed and its long-term impacts on water quality. The use of "legacy P" in many cases refers to the residuality of anthropogenic P inputs, and thus should be "residual P". We recommend that the term "residual P" be used when referring to the accumulation of P in soils under agricultural management from past inputs, and the term "legacy P" be used when referring to the transfer of P within watersheds. The intentional and thus consistent use of residual versus legacy P stands to provide important nuance in the environmental sciences and overlapping fields of agronomy and biogeochemistry.


Assuntos
Ecossistema , Fósforo , Fósforo/análise , Agricultura , Solo , Qualidade da Água , Fertilizantes/análise
6.
J Environ Qual ; 52(6): 1063-1079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725393

RESUMO

To monitor and meet water quality objectives, it is necessary to understand and quantify the contribution of nonpoint sources to total phosphorus (P) loading to surface waters. However, the contribution of streambank erosion to surface water P loads remains unclear and is typically unaccounted for in many nutrient loading assessments and policies. As a result, agricultural contributions of P are overestimated, and a potentially manageable nonpoint source of P is missed in strategies to reduce loads. In this perspective, we review and synthesize the results of a special symposium at the 2022 ASA-CSSA-SSSA annual meeting in Baltimore, MD, that focused on streambank erosion and its contributions to P loading of surface waters. Based on discussions among researchers and policy experts, we overview the knowns and unknowns, propose next steps to understand streambank erosion contribution to P export budgets, and discuss implications of the science of streambank erosion for policy and nutrient loss reduction strategies.


Assuntos
Monitoramento Ambiental , Fósforo , Monitoramento Ambiental/métodos , Fósforo/análise , Qualidade da Água , Agricultura , Nutrientes
7.
Glob Chang Biol ; 29(9): 2572-2590, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764676

RESUMO

Cover crops have been reported as one of the most effective practices to increase soil organic carbon (SOC) for agroecosystems. Impacts of cover crops on SOC change vary depending on soil properties, climate, and management practices, but it remains unclear how these control factors affect SOC benefits from cover crops, as well as which management practices can maximize SOC benefits. To address these questions, we used an advanced process-based agroecosystem model, ecosys, to assess the impacts of winter cover cropping on SOC accumulation under different environmental and management conditions. We aimed to answer the following questions: (1) To what extent do cover crops benefit SOC accumulation, and how do SOC benefits from cover crops vary with different factors (i.e., initial soil properties, cover crop types, climate during the cover crop growth period, and cover crop planting and terminating time)? (2) How can we enhance SOC benefits from cover crops under different cover crop management options? Specifically, we first calibrated and validated the ecosys model at two long-term field experiment sites with SOC measurements in Illinois. We then applied the ecosys model to six cover crop field experiment sites spanning across Illinois to assess the impacts of different factors on SOC accumulation. Our modeling results revealed the following findings: (1) Growing cover crops can bring SOC benefits by 0.33 ± 0.06 MgC ha-1  year-1 in six cover crop field experiment sites across Illinois, and the SOC benefits are species specific to legume and non-legume cover crops. (2) Initial SOC stocks and clay contents had overall small influences on SOC benefits from cover crops. During the cover crop growth period (i.e., winter and spring in the US Midwest), high temperature increased SOC benefits from cover crops, while the impacts from larger precipitation on SOC benefits varied field by field. (3) The SOC benefits from cover crops can be maximized by optimizing cover crop management practices (e.g., selecting cover crop types and controlling cover crop growth period) for the US Midwestern maize-soybean rotation system. Finally, we discussed the economic and policy implications of adopting cover crops in the US Midwest, including that current economic incentives to grow cover crops may not be sufficient to cover costs. This study systematically assessed cover crop impacts for SOC change in the US Midwest context, while also demonstrating that the ecosys model, with rigorous validation using field experiment data, can be an effective tool to guide the adaptive management of cover crops and quantify SOC benefits from cover crops. The study thus provides practical tools and insights for practitioners and policy-makers to design cover crop related government agricultural policies and incentive programs for farmers and agri-food related industries.


Assuntos
Carbono , Solo , Agricultura , Produtos Agrícolas , Zea mays
8.
Sci Total Environ ; 857(Pt 1): 159038, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36174684

RESUMO

Quantifying spatiotemporal dynamics of soil organic carbon (SOC) stocks is needed to understand the impact of land use change and can help target carbon sequestration efforts. In the recently and radically transformed landscapes of the state of Illinois, U.S.A., we evaluated surface SOC stocks under land use change using a space-for-time substitution method over 167 years. Additionally, we determined SOC stocks for the A horizon vs 0-30 cm depth to evaluate pedogenically-informed vs more commonly used fixed depth approaches. Legacy soil datasets from 1980 to 2012 were combined with environmental covariates using a random forest algorithm. To more accurately estimate pre-agricultural land use SOC stocks (i.e., pre-1845), SOC observations collected from soils under native prairie and forest were extracted from peer-reviewed publications. The model was validated on 25 % of the total 627 test data (RA-hor2: 0.59 and R0-302: 0.56; RMSEA-hor: 20.5 and RMSE0-30:19.3 Mg/ha) independent of the 75 % of data for calibration (R2: 0.91; RMSEA-hor:10.1 and RMSE0-30:9.6 Mg/ha). SOC stocks were largest under prairie (A horizon: 156.1 Mg/ha; 0-30 cm: 152.4 Mg/ha) and lowest under pasture (A horizon: 33.2, 0-30 cm: 44.6 Mg/ha). SOC stocks varied less by soil order than by land use. Between 1845 and 2012, surface SOC stocks decreased for most of Illinois, with greatest losses in central (-16.3 Mg/ha) and east-central Illinois (-47.0 Mg/ha) where approximately 80 % of prairie was converted to cropland. A slight increase in surface SOC stocks occurred in the unglaciated northwest region and the less recently glaciated south region, as well as in alluvial corridors. This study (i) highlights how estimating spatiotemporal dynamics of surface SOC stocks over centennial timescales can benefit from including measures of SOC under native land use not usually contained in legacy pedon datasets, and (ii) illustrates the potential of identifying localized hotspots of historical SOC loss and thus deficits that can be prioritized for carbon sequestration efforts.


Assuntos
Carbono , Solo , Carbono/análise , Pradaria , Sequestro de Carbono , Illinois
9.
Environ Sci Technol ; 56(12): 8691-8701, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617125

RESUMO

Anthropogenic discharge of excess phosphorus (P) to water bodies and increasingly stringent discharge limits have fostered interest in quantifying opportunities for P recovery and reuse. To date, geospatial estimates of P recovery potential in the United States (US) have used human and livestock population data, which do not capture the engineering constraints of P removal from centralized water resource recovery facilities (WRRFs) and corn ethanol biorefineries where P is concentrated in coproduct animal feeds. Here, renewable P (rP) estimates from plant-wide process models were used to create a geospatial inventory of recovery potential for centralized WRRFs and biorefineries, revealing that individual corn ethanol biorefineries can generate on average 3 orders of magnitude more rP than WRRFs per site, and all corn ethanol biorefineries can generate nearly double the total rP of WRRFs across the US. The Midwestern states that make up the Corn Belt have the largest potential for P recovery and reuse from both corn biorefineries and WRRFs with a high degree of co-location with agricultural P consumption, indicating the untapped potential for a circular P economy in this globally significant grain-producing region.


Assuntos
Fósforo , Zea mays , Ração Animal , Animais , Etanol , Humanos , Águas Residuárias
10.
Sci Total Environ ; 836: 155076, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35398426

RESUMO

Urban agriculture in post-industrial cities faces concerns on human health risks posed by elevated lead (Pb) concentrations of edible plant tissues grown in Pb-enriched soils. A recommended mitigation strategy to decrease soil Pb bioavailability to humans is the addition of soluble phosphate (PO43--P), but it is unclear if this strategy can also reduce crop Pb uptake and accumulation in edible tissues. Across urban agriculture sites in Chicago, Illinois (6 site-years) with elevated total soil Pb, we tested the hypothesized decrease in tomato fruit Pb following soil-based application of three phosphate-based mitigation amendments: triple superphosphate, composted biosolids, and air dried biosolids. Fruit Pb concentrations (mg Pb kg-1 dry mass) and loads (mg Pb m-2) were unaffected by mitigation amendments. However, fruit Pb concentrations were higher by an order of magnitude in 2020 (≥0.13 mg kg-1) compared to 2019 (0.01 mg kg-1) for two of the three sites. Though highly variable across site-years, the bioconcentration factor (BCF) of Pb from soil to fruit varied was unaffected by mitigation amendments. Relatively low BCF values were consistent with fruit Pb concentrations being below FAO/WHO risk limits. Collectively, our findings support previous propositions that fruits of plants grown in soils with elevated Pb generally pose lower risk to consumers. To mitigate health risks of consuming tomatoes grown in soils with Pb contamination, the seasonality of Pb uptake should be investigated, and greater focus should be placed on where tomatoes are grown rather than phosphate-based immobilization strategies originally designed to mitigate human bioavailability.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Biossólidos , Frutas/química , Humanos , Chumbo/análise , Metais Pesados/análise , Fosfatos , Estações do Ano , Solo , Poluentes do Solo/análise
11.
PLoS One ; 17(2): e0261989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108270

RESUMO

Elevated cadmium (Cd) concentrations in cacao and cocoa-based products (e.g., chocolate) present a potentially serious human health risk. While recent regulatory changes have established a threshold of 0.8 mg kg-1 for Cd content of cocoa-based products, the biophysical factors (e.g., climatic or edaphic conditions) that determine the amount of soil-derived Cd in the cacao bean are poorly understood and have yet to be quantitatively assessed across diverse production contexts. To determine the primary drivers of cacao bean Cd, we used the scientific literature to systematically compile a database of climatic, edaphic, and plant data from across the Cacao Belt, which is approximately 20 degrees latitude on either side of the equator. From this compiled dataset, we then used boosted regression trees to quantitatively synthesize and evaluate these drivers of cacao bean Cd. Total soil Cd concentration, soil pH, and leaf Cd were the best predictors of bean Cd content. Notably, we found that both available soil Cd and soil organic carbon (SOC) content had negligible effects on bean Cd. However, soil pH and SOC decreased the degree of bioconcentration of total soil Cd in the bean Cd concentration. Thus, given the difficulty in remediating soil Cd enriched soils, our results suggest that Cd mitigation strategies targeting plant physiology-based approaches (e.g., breeding, rootstocks) have a higher probability of success than soil-based strategies (e.g., remediation).


Assuntos
Cacau/química , Cádmio/análise , Bioacumulação/fisiologia , Cacau/metabolismo , Bases de Dados Factuais , Concentração de Íons de Hidrogênio , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/metabolismo , Solo/química
12.
Environ Sci Pollut Res Int ; 29(5): 6733-6743, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34460085

RESUMO

Denitrifying woodchip bioreactors are a practical nitrogen (N) mitigation technology but evaluating the potential for bioreactor phosphorus (P) removal is highly relevant given that (1) agricultural runoff often contains N and P, (2) very low P concentrations cause eutrophication, and (3) there are few options for removing dissolved P once it is in runoff. A series of batch tests evaluated P removal by woodchips that naturally contained a range of metals known to sorb P and then three design and environmental factors (water matrix, particle size, initial dissolved reactive phosphorus (DRP) concentration). Woodchips with the highest aluminum and iron content provided the most dissolved P removal (13±2.5 mg DRP removed/kg woodchip). However, poplar woodchips, which had low metals content, provided the second highest removal (12±0.4 mg/kg) when they were tested with P-dosed river water which had a relatively complex water matrix. Chemical P sorption due to woodchip elements may be possible, but it is likely one of a variety of P removal mechanisms in real-world bioreactor settings. Scaling the results indicated bioreactors could remove 0.40 to 13 g DRP/ha. Woodchip bioreactor dissolved P removal will likely be small in magnitude, but any such contribution is an added-value benefit of this denitrifying technology.


Assuntos
Desnitrificação , Fósforo , Reatores Biológicos , Nitratos , Água , Madeira
13.
ACS Nano ; 15(7): 10748-10758, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34269059

RESUMO

Agricultural innovation is a key component of the global economy and enhances food security, health, and nutrition. Current innovation efforts focus mainly on supporting the transition to sustainable food systems, which is expected to harness technological advances across a range of fields. In this Nano Focus, we discuss how such efforts would benefit from not only supporting farmer participation in deciding transition pathways but also in fostering the interdisciplinary training and development of entrepreneurial-minded farmers, whom we term "AgTech Pioneers", to participate in cross-sector agricultural innovation ecosystems as cocreators and informed users of developing and future technologies. Toward this goal, we discuss possible strategies based on talent development, cross-disciplinary educational and training programs, and innovation clusters to build an AgTech Pioneer ecosystem, which can help to reinvigorate interest in farming careers and to identify and address challenges and opportunities in agriculture by accelerating and applying advances in nanoscience, nanotechnology, and related fields.


Assuntos
Agricultura , Ecossistema , Nanotecnologia
14.
Environ Sci Technol ; 54(17): 10446-10459, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867485

RESUMO

Sanitation remains a global challenge, both in terms of access to toilet facilities and resource intensity (e.g., energy consumption) of waste treatment. Overcoming barriers to universal sanitation coverage and sustainable resource management requires approaches that manage bodily excreta within coupled human and natural systems. In recent years, numerous analytical methods have been developed to understand cross-disciplinary constraints, opportunities, and trade-offs around sanitation and resource recovery. However, without a shared language or conceptual framework, efforts from individual disciplines or geographic contexts may remain isolated, preventing the accumulation of generalized knowledge. Here, we develop a version of the social-ecological systems framework modified for the specific characteristics of bodily excreta. This framework offers a shared vision for sanitation as a human-derived resource system, where people are part of the resource cycle. Through sanitation technologies and management strategies, resources including water, organics, and nutrients accumulate, transform, and impact human experiences and natural environments. Within the framework, we establish a multitiered lexicon of variables, characterized by breadth and depth, to support harmonized understanding and development of models and analytical approaches. This framework's refinement and use will guide interdisciplinary study around sanitation to identify guiding principles for sanitation that advance sustainable development at the nature-society interface.


Assuntos
Saneamento , Banheiros , Conservação dos Recursos Naturais , Humanos , Tecnologia , Recursos Humanos
16.
J Environ Qual ; 48(5): 1397-1413, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31589729

RESUMO

Redirecting anthropogenic waste phosphorus (P) flows from receiving water bodies to high P demand agricultural fields requires a resource management approach that integrates biogeochemistry, agronomy, engineering, and economics. In the US Midwest, agricultural reuse of P recovered from spatially colocated waste streams stands to reduce point-source P discharges, meet agricultural P needs, and-depending on the speciation of recovered P-mitigate P losses from agriculture. However, the speciation of P recovered from waste streams via its chemical transformation-referred to here as recovered P (rP) differs markedly based on waste stream composition and recovery method, which can further interact with soil and crop characteristics of agricultural sinks. The solubility of rP presents key tensions between engineered P recovery and agronomic reuse because it defines both the ability to remove organic and inorganic P from aqueous streams and the crop availability of rP. The potential of rP generation and composition differs greatly among animal, municipal, and grain milling waste streams due to the aqueous speciation of P and presence of coprecipitants. Two example rP forms, phytin and struvite, engage in distinct biogeochemical processes on addition to soils that ultimately influence crop uptake and potential losses of rP. These processes also influence the fate of nitrogen (N) embodied in rP. The economics of rP generation and reuse will determine if and which rP are produced. Matching rP species to appropriate agricultural systems is critical to develop sustainable and financially viable regional exchanges of rP from wastewater treatment to agricultural end users.


Assuntos
Fósforo , Solo , Agricultura , Animais , Nitrogênio , Estruvita
17.
Environ Sci Technol ; 53(11): 6501-6510, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017776

RESUMO

Recovering human-derived nutrients from sanitation systems can offset inorganic fertilizer use and improve access to agricultural nutrients in resource-limited settings, but the agronomic value of recovered products depends upon product chemistry and soil context. Products may exacerbate already-compromised soil conditions, offer benefits beyond nutrients, or have reduced efficacy depending on soil characteristics. Using global spatial modeling, we evaluate the soil suitability of seven products (wastewater, sludge, compost, urine, ammonium sulfate, ammonium struvite, potassium struvite) and integrate this information with local recovery potential of each product from sanitation systems that will need to be installed to achieve universal coverage (referred to here as "newly-installed sanitation"). If product recovery and reuse are colocated, the quantity and suitability of nutrient reuse was variable across countries. For example, alkaline products (e.g., struvite) may be particularly beneficial when applied to acidic soils in Uganda but potentially detrimental in the southwestern United States. Further, we illustrate discrepancies across soil data sets and highlight the need for locally accurate data, knowledge, and interpretation. Overall, this study demonstrates soil context is critical to comprehensively characterize the value proposition of nutrient recovery, and it provides a foundation for incorporating soil suitability into local and global sanitation decision-making.


Assuntos
Solo , Águas Residuárias , Humanos , Sudoeste dos Estados Unidos , Estruvita , Uganda
18.
J Vis Exp ; (143)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30688294

RESUMO

Soil organic matter (SOM) underlies numerous soil processes and functions. Fourier transform infrared (FTIR) spectroscopy detects infrared-active organic bonds that constitute the organic component of soils. However, the relatively low organic matter content of soils (commonly < 5% by mass) and absorbance overlap of mineral and organic functional groups in the mid-infrared (MIR) region (4,000-400 cm-1) engenders substantial interference by dominant mineral absorbances, challenging or even preventing interpretation of spectra for SOM characterization. Spectral subtractions, a post-hoc mathematical treatment of spectra, can reduce mineral interference and enhance resolution of spectral regions corresponding to organic functional groups by mathematically removing mineral absorbances. This requires a mineral-enriched reference spectrum, which can be empirically obtained for a given soil sample by removing SOM. The mineral-enriched reference spectrum is subtracted from the original (untreated) spectrum of the soil sample to produce a spectrum representing SOM absorbances. Common SOM removal methods include high-temperature combustion ('ashing') and chemical oxidation. Selection of the SOM removal method carries two considerations: (1) the amount of SOM removed, and (2) absorbance artifacts in the mineral reference spectrum and thus the resulting subtraction spectrum. These potential issues can, and should, be identified and quantified in order to avoid fallacious or biased interpretations of spectra for organic functional group composition of SOM. Following SOM removal, the resulting mineral-enriched sample is used to collect a mineral reference spectrum. Several strategies exist to perform subtractions depending on the experimental goals and sample characteristics, most notably the determination of the subtraction factor. The resulting subtraction spectrum requires careful interpretation based on the aforementioned methodology. For many soil and other environmental samples containing substantial mineral components, subtractions have strong potential to improve FTIR spectroscopic characterization of organic matter composition.


Assuntos
Compostos Orgânicos/química , Solo/química , Espectrofotometria Infravermelho/métodos , Artefatos , Minerais/química , Oxirredução
19.
Appl Spectrosc ; 71(7): 1506-1518, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28361600

RESUMO

Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treated soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm-1 (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil may differ for soils with different mineralogies, future work should examine additional soil and land use types to optimize characterizations of oxidation effects on SOM composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA