Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(22): 4486-4497, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31093625

RESUMO

The unique power of NMR spectroscopy in anisotropic media (LX-NMR) as a tool to obtain local and bulk structural information, combined with the effectiveness of molecular dynamics simulations at the atomistic level, shows very attractive potentialities for the study of interesting, even though still poorly understood, materials such as Ionic Liquid Crystals (ILCs). In this work, we focused our attention, in particular, on the orientational ordering of two mesophases: 1-dodecyl-3-methylimidazolium chloride, [C12C1im]Cl, and 1-dodecyl-3-methylimidazolium tetrafluoroborate, [C12C1im][BF4]. Both ILCs were studied by a 2H NMR direct investigation of the molecules forming the phases, suitably deuterated, and by 1H NMR spectroscopy, using the small rigid probe-solutes 1,4-dichlorobenzene (DCB), dissolved in [C12C1im][BF4] and [C12C1im]Cl, and 1,4-dibromobenzene (DBB) dissolved in [C12C1im][BF4], to probe the local, internal structure and organization of the mesophases. The experimental results were then compared with the predictions, by atomistic MD simulations, of the structure of the smectic phase of the two salts, at two selected temperatures, containing a single DCB molecule as a probe. The MD simulations show that the DCB solute is distributed only within the hydrophobic layers of the ILC. Orientational order parameters of the imidazolium cations and of the DCB molecule were obtained and compared with the experiments, showing a general good agreement and allowing a deeper understanding of the microscopic structure of the systems.

2.
Soft Matter ; 13(30): 5204-5213, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671229

RESUMO

We have investigated the effect of electrostatic interactions in mixtures of soft ellipsoids and spheres based on the well-known Gay-Berne (GB) and Lennard-Jones (LJ) potential, respectively. These model systems, in their original version, that is without any electrostatic charge, have been thoroughly investigated in the literature both as pure components and mixtures. In particular, mixtures of particles of different shapes, such as spheres and ellipsoids, tend to phase separate because of the excluded volume effects. Common ionic liquid crystals, based on imidazolium or other quaternary ammonium salts, are usually composed of roughly elongated (although flexible) cations and roughly spherical anions, that is, particles with a similar shape such as the GB and LJ models. Therefore, in this work, we present the results of molecular dynamics simulations of mixtures of positively charged GB and negatively charged LJ particles as models of ionic liquid crystals. Interestingly, by modulating the charge of the particles it is possible to stabilize isotropic, nematic, smectic and crystalline ionic phases. The relative weight of Coulomb (a radial, therefore isotropic interaction) and van der Waals (an anisotropic interaction) contributions is a key parameter to tune the stability of various mesophases.

3.
Angew Chem Int Ed Engl ; 55(8): 2733-7, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26809047

RESUMO

The use of micrometric hollow silica spheres is described as a strategy to reduce magnetic field inhomogeneities in the context of NMR chromatography. When employed as a stationary phase, hollow silica microspheres allow the use of common solution-state NMR instruments to measure the diffusion coefficient perturbation induced by the interaction of the analytes with the silica surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA