Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38349407

RESUMO

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Assuntos
Dissulfiram , Leucemia Mieloide Aguda , Humanos , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(47): e2303978120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963252

RESUMO

Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Leukemia ; 35(11): 3101-3112, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33895784

RESUMO

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk ALL subtype with high rates of relapse and poor patient outcome. Activating mutations affecting components of the JAK-STAT signaling pathway occur in the majority of Ph-like ALL cases. The use of JAK inhibitors represents a potential treatment option for Ph-like ALL, although we and others have shown that CRLF2-rearranged Ph-like ALL responds poorly to single-agent JAK inhibitors in the preclinical setting. Therefore, the aim of this study was to identify effective combination treatments against CRLF2-rearranged Ph-like ALL, and to elucidate the underlying mechanisms of synergy. We carried out a series of high-throughput combination drug screenings and found that ruxolitinib exerted synergy with standard-of-care drugs used in the treatment of ALL. In addition, we investigated the molecular effects of ruxolitinib on Ph-like ALL by combining mass spectrometry phosphoproteomics with gene expression analysis. Based on these findings, we conducted preclinical in vivo drug testing and demonstrated that ruxolitinib enhanced the in vivo efficacy of an induction-type regimen consisting of vincristine, dexamethasone, and L-asparaginase in 2/3 CRLF2-rearranged Ph-like ALL xenografts. Overall, our findings support evaluating the addition of ruxolitinib to conventional induction regimens for the treatment of CRLF2-rearranged Ph-like ALL.


Assuntos
Rearranjo Gênico , Nitrilas/farmacologia , Preparações Farmacêuticas/administração & dosagem , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Citocinas/genética , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Br J Cancer ; 125(1): 55-64, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837299

RESUMO

BACKGROUND: The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS: A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS: Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS: Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias.


Assuntos
Auranofina/administração & dosagem , Citarabina/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Auranofina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Citarabina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Oncol ; 11: 779859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127484

RESUMO

Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.

6.
Org Biomol Chem ; 13(29): 8016-28, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26118967

RESUMO

Fragment-based in silico screening against dynamin I (dynI) GTPase activity identified the 1,8-naphthalimide framework as a potential scaffold for the design of new inhibitors targeting the GTP binding pocket of dynI. Structure-based design, synthesis and subsequent optimization resulted in the development of a library of 1,8-naphthalimide derivatives, called the Naphthaladyn™ series, with compounds 23 and 29 being the most active (IC50 of 19.1 ± 0.3 and 18.5 ± 1.7 µM respectively). Compound 29 showed effective inhibition of clathrin-mediated endocytosis (IC50(CME) 66 µM). The results introduce 29 as an optimised GTP-competitive lead Naphthaladyn™ compound for the further development of naphthalimide-based dynI GTPase inhibitors.


Assuntos
Dinamina I/antagonistas & inibidores , Naftalimidas/farmacologia , Aminas/química , Sítios de Ligação , Linhagem Celular Tumoral , Clatrina/metabolismo , Dinamina I/metabolismo , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Naftalimidas/química , Fosfatidilserinas/farmacologia , Estrutura Secundária de Proteína
7.
Traffic ; 14(12): 1272-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025110

RESUMO

Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ~ 15 µM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 µM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37-fold improvement in potency over dynasore for liposome-stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36-fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin-dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 µM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin-independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity-dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non-specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin-mediated endocytosis.


Assuntos
Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hidrazonas/farmacologia , Naftóis/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Toxina da Cólera/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Dinaminas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Naftóis/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Ovinos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Transferrinas/metabolismo
8.
ACS Chem Biol ; 8(7): 1507-18, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23642287

RESUMO

Dynamin is required for clathrin-mediated endocytosis (CME). Its GTPase activity is stimulated by phospholipid binding to its PH domain, which induces helical oligomerization. We have designed a series of novel pyrimidine-based "Pyrimidyn" compounds that inhibit the lipid-stimulated GTPase activity of full length dynamin I and II with similar potency. The most potent analogue, Pyrimidyn 7, has an IC50 of 1.1 µM for dynamin I and 1.8 µM for dynamin II, making it among the most potent dynamin inhibitors identified to date. We investigated the mechanism of action of the Pyrimidyn compounds in detail by examining the kinetics of Pyrimidyn 7 inhibition of dynamin. The compound competitively inhibits both GTP and phospholipid interactions with dynamin I. While both mechanisms of action have been previously observed separately, this is the first inhibitor series to incorporate both and thereby to target two distinct domains of dynamin. Pyrimidyn 6 and 7 reversibly inhibit CME of both transferrin and EGF in a number of non-neuronal cell lines as well as inhibiting synaptic vesicle endocytosis (SVE) in nerve terminals. Therefore, Pyrimidyn compounds block endocytosis by directly competing with GTP and lipid binding to dynamin, limiting both the recruitment of dynamin to membranes and its activation. This dual mode of action provides an important new tool for molecular dissection of dynamin's role in endocytosis.


Assuntos
Desenho de Fármacos , Dinaminas/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Bioensaio , Western Blotting , Células COS , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
9.
J Med Chem ; 56(1): 46-59, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23167654

RESUMO

Focused library development of our lead 2-cyano-3-(1-(3-(dimethylamino)propyl)-2-methyl-1H-indol-3-yl)-N-octylacrylamide (2) confirmed the tertiary dimethylamino-propyl moiety as critical for inhibition of dynamin GTPase. The cyanoamide moiety could be replaced with a thiazole-4(5H)-one isostere (19, IC(50(dyn I)) = 7.7 µM), reduced under flow chemistry conditions (20, IC(50(dyn I)) = 5.2 µM) or replaced by a simple amine. The latter provided a basis for a high yield library of compounds via a reductive amination by flow hydrogenation. Two compounds, 24 (IC(50 (dyn I)) = 0.56 µM) and 25 (IC(50(dyn I)) = 0.76 µM), stood out. Indole 24 is nontoxic and showed increased potency against dynamin I and II in vitro and in cells (IC(50(CME)) = 1.9 µM). It also showed 4.4-fold selectivity for dynamin I. The indole 24 compound has improved isoform selectivity and is the most active in-cell inhibitor of clathrin-mediated endocytosis reported to date.


Assuntos
Acrilamidas/síntese química , Dinamina II/antagonistas & inibidores , Dinamina I/antagonistas & inibidores , Indóis/síntese química , Acrilamidas/química , Acrilamidas/farmacologia , Animais , Encéfalo/enzimologia , Linhagem Celular Tumoral , Dinamina I/química , Dinamina II/química , Endocitose , Humanos , Indóis/química , Indóis/farmacologia , Ovinos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 3(5): 352-6, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900478

RESUMO

Six focused rhodanine-based libraries, 60 compounds in total, were synthesized and evaluated as potential dynamin I GTPase inhibitors. Twenty-six were more potent than the lead compound with 13 returning IC50 values ≤10 µM, making the Rhodadyn series among the most active dynamin inhibitors reported. Two analogues were highly effective at blocking receptor-mediated endocytosis: C10 and D10 with IC50(RME) = 7.0 ± 2.2 and 5.9 ± 1.0 µM, respectively. These compounds are equipotent with the best reported in-cell dynamin inhibitors.

11.
J Biol Chem ; 286(41): 35966-35976, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21832053

RESUMO

The botulinum neurotoxins (BoNTs) are di-chain bacterial proteins responsible for the paralytic disease botulism. Following binding to the plasma membrane of cholinergic motor nerve terminals, BoNTs are internalized into an endocytic compartment. Although several endocytic pathways have been characterized in neurons, the molecular mechanism underpinning the uptake of BoNTs at the presynaptic nerve terminal is still unclear. Here, a recombinant BoNT/A heavy chain binding domain (Hc) was used to unravel the internalization pathway by fluorescence and electron microscopy. BoNT/A-Hc initially enters cultured hippocampal neurons in an activity-dependent manner into synaptic vesicles and clathrin-coated vesicles before also entering endosomal structures and multivesicular bodies. We found that inhibiting dynamin with the novel potent Dynasore analog, Dyngo-4a(TM), was sufficient to abolish BoNT/A-Hc internalization and BoNT/A-induced SNAP25 cleavage in hippocampal neurons. Dyngo-4a also interfered with BoNT/A-Hc internalization into motor nerve terminals. Furthermore, Dyngo-4a afforded protection against BoNT/A-induced paralysis at the rat hemidiaphragm. A significant delay of >30% in the onset of botulism was observed in mice injected with Dyngo-4a. Dynamin inhibition therefore provides a therapeutic avenue for the treatment of botulism and other diseases caused by pathogens sharing dynamin-dependent uptake mechanisms.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Botulismo/prevenção & controle , Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hipocampo/metabolismo , Neurotoxinas/farmacologia , Animais , Botulismo/metabolismo , Células Cultivadas , Vesículas Revestidas por Clatrina/metabolismo , Dinaminas/metabolismo , Hidrazonas/farmacologia , Camundongos , Naftóis/farmacologia , Neurônios , Ratos , Vesículas Sinápticas/metabolismo
12.
Mol Cancer Ther ; 10(9): 1553-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21750222

RESUMO

Inhibitors of mitotic proteins such as Aurora kinase and polo-like kinase have shown promise in preclinical or early clinical development for cancer treatment. We have reported that the MiTMAB class of dynamin small molecule inhibitors are new antimitotic agents with a novel mechanism of action, blocking cytokinesis. Here, we examined 5 of the most potent of a new series of dynamin GTPase inhibitors called dynoles. They all induced cytokinesis failure at the point of abscission, consistent with inhibition of dynamin while not affecting other cell cycle stages. All 5 dynoles inhibited cell proliferation (MTT and colony formation assays) in 11 cancer cell lines. The most potent GTPase inhibitor, dynole 34-2, also induced apoptosis, as revealed by cell blebbing, DNA fragmentation, and PARP cleavage. Cell death was induced specifically following cytokinesis failure, suggesting that dynole 34-2 selectively targets dividing cells. Dividing HeLa cells were more sensitive to the antiproliferative properties of all 5 dynoles compared with nondividing cells, and nontumorigenic fibroblasts were less sensitive to cell death induced by dynole 34-2. Thus, the dynoles are a second class of dynamin GTPase inhibitors, with dynole 34-2 as the lead compound, that are novel antimitotic compounds acting specifically at the abscission stage.


Assuntos
Acrilamidas/farmacologia , Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Citocinese/efeitos dos fármacos , Dinaminas/antagonistas & inibidores , Indóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Inibidores de Calcineurina , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Camundongos , Neoplasias/enzimologia , Poliploidia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Tiazóis/farmacologia , Tubulina (Proteína)
13.
J Med Chem ; 53(14): 5267-80, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20575553

RESUMO

We report the development of a homology model for the GTP binding domain of human dynamin I based on the corresponding crystal structure of Dictyostelium discoidum dynamin A. Virtual screening identified 2-[(2-biphenyl-2-yl-1,3-dioxo-2,3-dihydro-1H-isoindole-5-carbonyl)amino]-4-chlorobenzoic acid (1) as a approximately 170 microM potent inhibitor. Homology modeling- and focused library-led synthesis resulted in development of a series of active compounds (the "pthaladyns") with 4-chloro-2-(2-(4-(hydroxymethyl)phenyl)-1,3-dioxoisoindoline-5-carboxamido)benzoic acid (29), a 4.58 +/- 0.06 microM dynamin I GTPase inhibitor. Pthaladyn-29 displays borderline selectivity for dynamin I relative to dynamin II ( approximately 5-10 fold). Only pthaladyn-23 (dynamin I IC(50) 17.4 +/- 5.8 microM) was an effective inhibitor of dynamin I mediated synaptic vesicle endocytosis in brain synaptosomes with an IC(50) of 12.9 +/- 5.9 microM. This compound was also competitive with respect to Mg(2+).GTP. Thus the pthaladyns are the first GTP competitive inhibitors of dynamin I and II GTPase and may be effective new tools for the study of neuronal endocytosis.


Assuntos
Benzoatos/síntese química , Dinamina II/antagonistas & inibidores , Dinamina I/antagonistas & inibidores , Dinaminas/química , Guanosina Trifosfato/metabolismo , Isoindóis/síntese química , Ftalimidas/síntese química , Proteínas de Protozoários/química , ortoaminobenzoatos/síntese química , Benzoatos/química , Benzoatos/farmacologia , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dictyostelium , Endocitose/efeitos dos fármacos , Humanos , Isoindóis/química , Isoindóis/farmacologia , Cinética , Ligantes , Modelos Moleculares , Ftalimidas/química , Ftalimidas/farmacologia , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
14.
Mol Cancer Ther ; 9(7): 1995-2006, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20571068

RESUMO

The endocytic protein dynamin II (dynII) participates in cell cycle progression and has roles in centrosome cohesion and cytokinesis. We have described a series of small-molecule inhibitors of dynamin [myristyl trimethyl ammonium bromides (MiTMAB)] that competitively interfere with the ability of dynamin to bind phospholipids and prevent receptor-mediated endocytosis. We now report that dynII functions specifically during the abscission phase of cytokinesis and that MiTMABs exclusively block this step in the cell cycle. Cells treated with MiTMABs (MiTMAB and octadecyltrimethyl ammonium bromide) and dyn-depleted cells remain connected via an intracellular bridge for a prolonged period with an intact midbody ring before membrane regression and binucleate formation. MiTMABs are the first compounds reported to exclusively block cytokinesis without affecting progression through any other stage of the cell cycle. Thus, MiTMABs represent a new class of antimitotic compounds. We show that MiTMABs are potent inhibitors of cancer cell growth and have minimal effect on nontumorigenic fibroblast cells. Thus, MiTMABs have toxicity and antiproliferative properties that preferentially target cancer cells. This suggests that dynII may be a novel target for pharmacologic intervention for the treatment of cancer.


Assuntos
Alcanos/farmacologia , Proliferação de Células/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Dinaminas/antagonistas & inibidores , Compostos de Amônio Quaternário/farmacologia , Compostos de Trimetil Amônio/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Dinaminas/genética , Dinaminas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Immunoblotting , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Interferência de RNA
15.
J Med Chem ; 53(10): 4094-102, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20426422

RESUMO

Herein we report the synthesis of discrete iminochromene ("iminodyn") libraries (14-38) as potential inhibitors of dynamin GTPase. Thirteen iminodyns were active (IC(50) values of 260 nM to 100 microM), with N,N-(ethane-1,2-diyl)bis(7,8-dihydroxy-2-iminochromene-3-carboxamide) (17), N,N-(ethane-1,2-diyl)bis(7,8-dihydroxy-2-iminochromene-3-carboxamide) (22), and N,N-(ethane-1,2-diyl)bis(7,8-dihydroxy-2-iminochromene-3-carboxamide) (23) (IC(50) values of 330 +/- 70, 450 +/- 50, and 260 +/- 80 nM, respectively) being the most potent. Five of the most potent iminodyns all inhibited dynamins I and II approximately equally. Iminodyn-22 displayed uncompetitive inhibition with respect to GTP. Selected iminodyns were evaluated for their ability to block receptor mediated endocytosis (RME, mediated by dynamin II) and synaptic vesicle endocytosis (SVE, mediated by dynamin I), with 17 showing no activity while 22 returned RME and SVE IC(50) values of 10.7 +/- 4.5 and 99.5 +/- 1.7 microM, respectively. The iminodyns reported herein represent a new chemical class of the first nanomolar potent dynamin inhibitors that are also effective endocytosis inhibitors.


Assuntos
Benzopiranos/síntese química , Dinamina II/antagonistas & inibidores , Dinamina I/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Animais , Benzopiranos/química , Benzopiranos/farmacologia , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Cinética , Masculino , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/metabolismo , Ovinos , Relação Estrutura-Atividade , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
16.
J Med Chem ; 52(12): 3762-73, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19459681

RESUMO

Screening identified two bisindolylmaleimides as 100 microM inhibitors of the GTPase activity of dynamin I. Focused library approaches allowed development of indole-based dynamin inhibitors called dynoles. 100-Fold in vitro enhancement of potency was noted with the best inhibitor, 2-cyano-3-(1-(2-(dimethylamino)ethyl)-1H-indol-3-yl)-N-octylacrylamide (dynole 34-2), a 1.3 +/- 0.3 microM dynamin I inhibitor. Dynole 34-2 potently inhibited receptor mediated endocytosis (RME) internalization of Texas red-transferrin. The rank order of potency for a variety of dynole analogues on RME in U2OS cells matched their rank order for dynamin inhibition, suggesting that the mechanism of inhibition is via dynamin. Dynoles are the most active dynamin I inhibitors reported for in vitro or RME evaluations. Dynole 34-2 is 15-fold more active than dynasore against dynamin I and 6-fold more active against dynamin mediated RME (IC(50) approximately 15 microM; RME IC(50) approximately 80 microM). The dynoles represent a new series of tools to better probe endocytosis and dynamin-mediated trafficking events in a variety of cells.


Assuntos
Acrilamidas/síntese química , Acrilamidas/farmacologia , Dinamina I/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Acrilamidas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Dinamina I/metabolismo , Inibidores Enzimáticos/química , Humanos , Indóis/química , Camundongos , Estrutura Molecular , Células NIH 3T3 , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade
17.
ChemMedChem ; 4(7): 1182-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19437476

RESUMO

Probing the dynamin binding site: Bis-tyrphostin (1, Bis-T), is a potent inhibitor of the phospholipid-stimulated GTPase activity of dynamin I. Analogues of Bis-T have significant potential as a biological probes for the dissection of endocytic pathways. Bis-T-derived compounds were synthesised and evaluated for their ability to inhibit the GTPase activity of dynamin I. Two analogues (23 and 24) represent the first asymmetrically substituted Bis-T analogues to retain dynamin inhibition.Two azidobenzyl amide (4 and 23) and one 3-trifluoromethyl-3H-diazirin-3-ylphenyl (24) analogues of bis-tyrphostin (1, Bis-T) were synthesised as potential photoaffinity labels for the elucidation of the binding site of compound 1 in dynamin I. Of the two azidobenzyl amide analogues (4 and 23), the terminally substituted 23 retained dynamin I GTPase inhibition (IC(50)=6.4+/-2.8 microM) whilst 4, which was substituted on the central carbon of the amide linker, displayed no activity. Analogue 24 also retained inhibitory activity (IC(50)=36+/-9 microM). Photoaffinity labelling experiments did not unequivocally elucidate the binding pocket of compound 1. However, compounds 23 and 24 represent the first asymmetrically substituted Bis-T analogues to retain dynamin inhibitory activity, providing a new direction for analogue synthesis.


Assuntos
Dinamina I/antagonistas & inibidores , Inibidores Enzimáticos/química , Tirfostinas/química , Animais , Dinamina I/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Ovinos , Tirfostinas/síntese química , Tirfostinas/farmacologia
18.
Chem Res Toxicol ; 21(9): 1760-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18597498

RESUMO

Arsenic (As) is responsible for mass-poisonings worldwide following the ingestion of As-contaminated drinking water. Importantly, however, As toxicity is exploited in the antileukemia drug, Trisenox (As2O3), which successfully cures 65-80% of patients suffering relapsed acute promyelocytic leukemia. In an effort to determine the intracellular organelle and biomolecular targets of As, microprobe X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) analyses were performed on HepG2 cells following their exposure to high doses of arsenite (1 mM) or arsenate (20 mM). Microprobe XRF elemental mapping of thin-sectioned cells showed As accumulation in the euchromatin region of the cell nucleus (following arsenite exposure) synonymous with As targeting of DNA or proteins involved in DNA transcription. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of arsenite-treated cells, however, showed the predominance of an As tris-sulfur species, providing increased credence to As interactions with nuclear proteins as a key factor in As-induced toxicity.


Assuntos
Arseniatos/metabolismo , Arseniatos/toxicidade , Arsenitos/metabolismo , Arsenitos/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Microanálise por Sonda Eletrônica , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Espectrometria por Raios X , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA