Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826295

RESUMO

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.

2.
Soft Matter ; 14(40): 8095-8104, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30159554

RESUMO

Due to their large mechanical strength and potential for functionalization, beta-solenoid proteins show promise as building blocks in biomaterials applications such as two- and three-dimensional scaffolds. We have designed simulation models of two-dimensional square and honeycomb protein lattices by covalently linking a beta-solenoid protein, the spruce budworm antifreeze protein (SBAFP), to symmetric protein multimers. Periodic boundary conditions applied to the simulation cell allow for the simulation of an infinite lattice. We use molecular dynamics to strain the lattice by deforming the simulation cell and measuring the resulting stress tensor. We evaluate the linear portion of stress-strain curves to extract the corresponding bulk and shear elastic moduli. When strained at a rate of 0.3 nm ps-1, the lattices yield a bulk modulus of approximately 3 GPa. This large elastic modulus demonstrates that 2-dimensional structures designed from beta-solenoid proteins can be expected to retain the exceptional material strength of their building blocks.


Assuntos
Proteínas Anticongelantes/química , Simulação por Computador , Simulação de Dinâmica Molecular , Estresse Mecânico , Elasticidade , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA