Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 178: 108082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422975

RESUMO

The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).


Assuntos
Inteligência Artificial , Testes de Toxicidade , Humanos , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos , Medição de Risco/métodos
2.
Environ Int ; 173: 107739, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805158

RESUMO

BACKGROUND: Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS: This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS: A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS: Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.


Assuntos
Cosméticos , Protetores Solares , Animais , Humanos , Feminino , Protetores Solares/efeitos adversos , Monitoramento Biológico , Benzofenonas/toxicidade , Benzofenonas/análise , Cosméticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA