Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ther Innov Regul Sci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060838

RESUMO

OBJECTIVES: This manuscript presents a comprehensive framework for the assessment of the value of real-world evidence (RWE) in healthcare decision-making. While RWE has been proposed to overcome some limitations of traditional, one-off studies, no systematic framework exists to measure if RWE actually lowers the burden. This framework aims to fill that gap by providing conceptual approaches for evaluating the time and cost efficiencies of RWE, thus guiding strategic investments in RWE infrastructure. METHODS: The framework consists of four components: (114th Congress. 21st Century Cures Act.; 2015. https://www.congress.gov/114/plaws/publ255/PLAW-114publ255.pdf .) identification of stakeholders using and producing RWE, (National Health Council. Glossary of Patient Engagement Terms. Published 2019. Accessed May 18. 2021. https://nationalhealthcouncil.org/glossary-of-patient-engagement-terms/ .) understanding value propositions on how RWE can benefit stakeholders, (Center for Drug Evaluation and Research. CDER Patient-Focused Drug Development. U.S. Food & Drug Administration.) defining key performance indicators (KPIs), and (U.S. Department of Health and Human Services - Food and Drug Administration: Center for Devices and Radiological Health and Center for Biologics Evaluation and Research. Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices - Guidance for Industry and Food and Drug Administration Staff. 2017. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida .) establishing metrics and case studies to assess value. KPIs are categorized as 'better, faster, or cheaper" as an indicator of value: better focusing on high-quality actionable evidence; 'faster,' denoting time-saving in evidence generation, and 'cheaper,' emphasizing cost-efficiency decision compared to methodologies that do not involve data routinely collected in clinical practice. Metrics and relevant case studies are tailored based on stakeholder value propositions and selected KPIs that can be used to assess what value has been created by using RWE compared to traditional evidence-generation approaches and comparing different RWE sources. RESULTS: Operationalized through metrics and case studies drawn from the literature, the value of RWE is documented as improving treatment effect heterogeneity evaluation, expanding medical product labels, and expediting post-market compliance. RWE is also shown to reduce the cost and time required to produce evidence compared to traditional one-off approaches. An original example of a metric that measures the time saved by RWE methods to detect a signal of a product failure was presented based on analysis of the National Cardiovascular Disease Registry. CONCLUSIONS: The framework presented in this manuscript offers a comprehensive approach for evaluating the value of RWE, applicable to all stakeholders engaged in leveraging RWE for healthcare decision-making. Through the proposed metrics and illustrated case studies, valuable insights are provided into the heightened efficiency, cost-effectiveness, and improved decision-making within clinical and regulatory domains facilitated by RWE. While this framework is primarily focused on medical devices, it could potentially inform the determination of RWE value in other medical products. By discerning the variations in cost, time, and data utility among various evidence-generation methods, stakeholders are empowered to invest strategically in RWE infrastructure and shape future research endeavors.

2.
J Neurointerv Surg ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862209

RESUMO

BACKGROUND: Real-world data can be helpful in evaluating endovascular therapy (EVT) in ischemic stroke care. We conducted a pilot study to aggregate data on basilar artery occlusion (BAO) EVT from existing registries in the USA. We evaluated the availability, completeness, quality, and consistency of common data elements (CDEs) across data sources. METHODS: We harmonized patient-level data from five registry data sources and assessed the availability, completeness (defined by the presence in at least four data sources), and consistency of CDEs. We assessed data quality based on seven pre-defined critical domains for BAO EVT investigation: baseline patient and disease characteristics; time metrics; description of intervention; adjunctive devices, revascularization scores, complications; post-intervention National Institutes of Health Stroke Scale scores; discharge disposition; 30-day and 90-day mortality and modified Rankin Scale (mRS) scores. RESULTS: The aggregated dataset of five registries included 493 BAO procedures between January 2013 and January 2020. In total, 88 CDEs were screened and 35 (40%) elements were considered prevalent. Of these 35 CDEs, the majority were collected for >80% of cases when aggregated. All seven pre-defined domains for BAO device investigation could be fulfilled with harmonized data elements. Most data elements were collected with consistent or compatible definitions across registries. The main challenge was the collection of 90-day outcomes. CONCLUSIONS: This pilot shows the feasibility of aggregating and harmonizing critical CDEs across registries to create a Coordinated Registry Network (CRN). The CRN with partnerships between multiple registries and stakeholders could help improve the breadth and/or depth of real-world data to help answer relevant questions and support clinical and regulatory decisions.

3.
Am J Epidemiol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38754870

RESUMO

Clinicians, researchers, regulators, and other decision-makers increasingly rely on evidence from real-world data (RWD), including data routinely accumulating in health and administrative databases. RWD studies often rely on algorithms to operationalize variable definitions. An algorithm is a combination of codes or concepts used to identify persons with a specific health condition or characteristic. Establishing the validity of algorithms is a prerequisite for generating valid study findings that can ultimately inform evidence-based health care. This paper aims to systematize terminology, methods, and practical considerations relevant to the conduct of validation studies of RWD-based algorithms. We discuss measures of algorithm accuracy; gold/reference standard; study size; prioritizing accuracy measures; algorithm portability; and implication for interpretation. Information bias is common in epidemiologic studies, underscoring the importance of transparency in decisions regarding choice and prioritizing measures of algorithm validity. The validity of an algorithm should be judged in the context of a data source, and one size does not fit all. Prioritizing validity measures within a given data source depends on the role of a given variable in the analysis (eligibility criterion, exposure, outcome or covariate). Validation work should be part of routine maintenance of RWD sources.

4.
Front Cardiovasc Med ; 10: 1331142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38463423

RESUMO

Background: Following the identification of a late mortality signal, the Food and Drug Administration (FDA) convened an advisory panel that concluded that additional clinical study data are needed to comprehensively evaluate the late mortality signal observed with the use of drug-coated balloons (DCB) and drug-eluting stent (DES). The objective of this review is to (1) identify and summarize the existing clinical and cohort studies assessing paclitaxel-coated DCBs and DESs, (2) describe and determine the quality of the available data sources for the evaluation of these devices, and (3) present methodologies that can be leveraged for proper signal discernment within available data sources. Methods: Studies and data sources were identified through comprehensive searches. original research studies, clinical trials, comparative studies, multicenter studies, and observational cohort studies written in the English language and published from January 2007 to November 2021, with a follow-up longer than 36 months, were included in the review. Data quality of available data sources identified was assessed in three groupings. Moreover, accepted data-driven methodologies that may help circumvent the limitations of the extracted studies and data sources were extracted and described. Results: There were 39 studies and data sources identified. This included 19 randomized clinical trials, nine single-arm studies, eight registries, three administrative claims, and electronic health records. Methodologies focusing on the use of existing premarket clinical data, the incorporation of all contributed patient time, the use of aggregated data, approaches for individual-level data, machine learning and artificial intelligence approaches, Bayesian approaches, and the combination of various datasets were summarized. Conclusion: Despite the multitude of available studies over the course of eleven years following the first clinical trial, the FDA-convened advisory panel found them insufficient for comprehensively assessing the late-mortality signal. High-quality data sources with the capabilities of employing advanced statistical methodologies are needed to detect potential safety signals in a timely manner and allow regulatory bodies to act quickly when a safety signal is detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA