Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Neurourol J ; 26(4): 299-307, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599338

RESUMO

PURPOSE: Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis. METHODS: Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia. RESULTS: The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature. CONCLUSION: These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.

2.
J Am Soc Nephrol ; 30(12): 2384-2398, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31575700

RESUMO

BACKGROUND: The primary site of damage during AKI, proximal tubular epithelial cells, are highly metabolically active, relying on fatty acids to meet their energy demands. These cells are rich in mitochondria and peroxisomes, the two organelles that mediate fatty acid oxidation. Emerging evidence shows that both fatty acid pathways are regulated by reversible posttranslational modifications, particularly by lysine acylation. Sirtuin 5 (Sirt5), which localizes to both mitochondria and peroxisomes, reverses post-translational lysine acylation on several enzymes involved in fatty acid oxidation. However, the role of the Sirt5 in regulating kidney energy metabolism has yet to be determined. METHODS: We subjected male Sirt5-deficient mice (either +/- or -/-) and wild-type controls, as well as isolated proximal tubule cells, to two different AKI models (ischemia-induced or cisplatin-induced AKI). We assessed kidney function and injury with standard techniques and measured fatty acid oxidation by the catabolism of 14C-labeled palmitate to 14CO2. RESULTS: Sirt5 was highly expressed in proximal tubular epithelial cells. At baseline, Sirt5 knockout (Sirt5-/- ) mice had modestly decreased mitochondrial function but significantly increased fatty acid oxidation, which was localized to the peroxisome. Although no overt kidney phenotype was observed in Sirt5-/- mice, Sirt5-/- mice had significantly improved kidney function and less tissue damage compared with controls after either ischemia-induced or cisplatin-induced AKI. This coincided with higher peroxisomal fatty acid oxidation compared with mitochondria fatty acid oxidation in the Sirt5-/- proximal tubular epithelial cells. CONCLUSIONS: Our findings indicate that Sirt5 regulates the balance of mitochondrial versus peroxisomal fatty acid oxidation in proximal tubular epithelial cells to protect against injury in AKI. This novel mechanism might be leveraged for developing AKI therapies.


Assuntos
Injúria Renal Aguda/metabolismo , Ácidos Graxos/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Sirtuínas/fisiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Cisplatino/toxicidade , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sirtuínas/deficiência , Sirtuínas/genética
3.
Biology (Basel) ; 7(2)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843387

RESUMO

Rab GTPases are essential regulators of many cellular processes and play an important role in downstream signaling vital to proper cell function. We sought to elucidate the role of novel D. discoideum GTPase RabS. Cell lines over-expressing DdRabS and expressing DdRabS N137I (dominant negative (DN)) proteins were generated, and it was determined that DdRabS localized to endosomes, ER-Golgi membranes, and the contractile vacuole system. It appeared to function in vesicular trafficking, and the secretion of lysosomal enzymes. Interestingly, microscopic analysis of GFP-tagged DdRabS (DN) cells showed differential localization to lysosomes and endosomes compared to GFP-tagged DdRabS overexpressing cells. Both cell lines over-secreted lysosomal glycosidase enzymes, especially ß-glucosidase. Furthermore, DdRabS overexpressing cells were defective in aggregation due to decreased cell⁻cell cohesion and sensitivity to cAMP, leading to abnormal chemotactic migration, the inability to complete development, and increased induced cell death. These data support a role for DdRabS in trafficking along the vesicular and biosynthetic pathways. We hypothesize that overexpression of DdRabS may interfere with GTP activation of related proteins essential for normal development resulting in a cascade of defects throughout these processes.

4.
Am J Physiol Renal Physiol ; 313(3): F611-F620, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539333

RESUMO

Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice (Flk1fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1fl/fl (Flk1ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1ST-/- kidneys vs. CONTROLS: Juvenile Flk1ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages.


Assuntos
Capilares/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Progenitoras Endoteliais/metabolismo , Rim/irrigação sanguínea , Células Estromais/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Capilares/anormalidades , Fatores de Transcrição Forkhead/genética , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Rim/anormalidades , Rim/fisiopatologia , Capacidade de Concentração Renal , Medula Renal/anormalidades , Túbulos Renais Coletores/anormalidades , Camundongos Knockout , Morfogênese , Neovascularização Fisiológica , Fenótipo , Ureter/anormalidades , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
5.
J Biol Chem ; 292(24): 10239-10249, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28458255

RESUMO

SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro, succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5-/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5-/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5-/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function.


Assuntos
Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Hepatócitos/enzimologia , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Substituição de Aminoácidos , Animais , Cardiolipinas/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Mutação , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Sirtuínas/genética
6.
J Biosci ; 41(2): 205-17, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27240981

RESUMO

Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80 percent homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.


Assuntos
Dictyostelium/genética , Osmorregulação/genética , Proteína rab2 de Ligação ao GTP/genética , Sequência de Aminoácidos , Retículo Endoplasmático/genética , Complexo de Golgi/fisiologia , Proteínas de Fluorescência Verde , Transporte Proteico/genética , Vacúolos/genética , Vacúolos/metabolismo
7.
Pediatr Nephrol ; 31(8): 1231-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26493067

RESUMO

Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell-cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair.


Assuntos
Injúria Renal Aguda/patologia , Microvasos/patologia , Animais , Criança , Humanos , Rim/irrigação sanguínea
8.
Iran J Parasitol ; 10(2): 213-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246819

RESUMO

BACKGROUND: Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host's immune response. Acanthamoeba Type-I metacaspase (Acmcp) is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein. METHODS: The full length of Acmcp and a mutated version of the same gene, which lacks the proline rich N-terminal region (Acmcp-dpr), were cloned into the pDneo2a-GFP vector separately. The pDneo2a-GFP-Acmcp and pDneo2a-GFPAcmcp-dpr were electro-transfected into wild type D. discoideum cells to create cell lines that over-expressed Acmcp or Acmcp-dpr. RESULTS: Both cell lines that over-expressed Acmcp and Acmcp-dpr showed a significant increase in the fluid phase internalization and phagocytosis rate compared to the control cells. Additionally, the cells expressing the Acmcp-dpr mutant were unable to initiate early development and failed to aggregate or form fruiting bodies under starvation conditions, whereas Acmcp over-expressing cells showed the opposite phenomena. Quantitative cell death analysis provided additional support for these findings. CONCLUSION: Acmcp is involved in the processes of endocytosis and phagocytosis. In addition, the proline rich region in Acmcp is important for cellular development in Dictyostelium. Given its important role in the development process, metacaspase protein is proposed as a candidate drug target against infections caused by A. castellanii.

9.
Biology (Basel) ; 3(3): 514-35, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25157910

RESUMO

Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA), and dominant negative (DN) forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell-cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

10.
J Biosci ; 38(3): 509-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23938384

RESUMO

Dictyostelium discoideum possesses only one caspase family member, paracaspase (pcp). Two separate mutant cell lines were first analysed: one cell line was an over-expressed GFP-tagged Pcp (GFP-Pcp), while the other cell line was a pcp-null (pcp-). Microscopic analysis of cells expressing GFP-Pcp revealed that Pcp was associated with the contractile vacuole membrane consisting of bladder-like vacuoles. This association was disrupted when cells were exposed to osmotic stress conditions. Compared with wild-type cells, the GFP-Pcp-over-expressing cells were susceptible to osmotic stress and were seen to be very rounded in hypo-osmotic conditions and contained more abnormally swollen contractile vacuole. Cells with pcp- were also rounded but had few, if any, contractile vacuoles. These observations suggest that Pcp is essential for Dictyostelium osmotic regulation via its functioning in the contractile vacuole system. Subjecting these cells to selected contractile vacuole inhibitor provided additional support for these findings. Furthermore, yeast two-hybrid system identified vacuolar proton ATPase (VatM) as the protein interacting with Pcp. Taken together, this work gives evidence for an eukaryotic paracaspase to be associated with both localization in and regulation of the contractile vacuolar system, an organelle critical for maintaining the normal morphology of the cell.


Assuntos
Caspases/genética , Dictyostelium/genética , Endocitose/genética , Proteínas de Protozoários/genética , ATPases Vacuolares Próton-Translocadoras/genética , Caspases/metabolismo , Linhagem Celular , Dictyostelium/enzimologia , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/química , Mapas de Interação de Proteínas , Prótons , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA