Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 6(9): 1578-1586, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999933

RESUMO

Cowlesite, ideally Ca6Al12Si18O60·36H2O, is to date the only natural zeolite whose structure could not be determined by X-ray methods. In this paper, we present the ab initio structure determination of this mineral obtained by three-dimensional (3D) electron diffraction data collected from single-crystal domains of a few hundreds of nanometers. The structure of cowlesite consists of an alternation of rigid zeolitic layers and low-density interlayers supported by water and cations. This makes cowlesite the only two-dimensional (2D) zeolite known in nature. When cowlesite gets in contact with a transmission electron microscope vacuum, a phase transition to a conventional 3D zeolite framework occurs in few seconds. The original cowlesite structure could be preserved only by adopting a cryo-plunging sample preparation protocol usually employed for macromolecular samples. Such a protocol allows the investigation by 3D electron diffraction of very hydrated and very beam-sensitive inorganic materials, which were previously considered intractable by transmission electron microscopy crystallographic methods.

2.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899256

RESUMO

Applications of cyanoacrylate monomers are generally limited to adhesives/glues (instant or superglues) and forensic sciences. They tend to polymerize rapidly into rigid structures when exposed to trace amounts of moisture. Transforming cyanoacrylate monomers into transparent polymeric films or coatings can open up several new applications, as they are biocompatible, biodegradable and have surgical uses. Like other acrylics, cyanoacrylate polymers are glassy and rigid. To circumvent this, we prepared transparent cyanoacrylate films by solvent casting from a readily biodegrade solvent, cyclopentanone. To improve the ductility of the films, poly(propylene carbonate) (PPC) biopolymer was used as an additive (maximum 5 wt.%) while maintaining transparency. Additionally, ductile films were functionalized with caffeic acid (maximum 2 wt.%), with no loss of transparency while establishing highly effective double functionality, i.e., antioxidant effect and effective UV-absorbing capability. Less than 25 mg antioxidant caffeic acid release per gram film was achieved within a 24-h period, conforming to food safety regulations. Within 2 h, films achieved 100% radical inhibition levels. Films displayed zero UVC (100-280 nm) and UVB (280-315 nm), and ~15% UVA (315-400 nm) radiation transmittance comparable to advanced sunscreen materials containing ZnO nanoparticles or quantum dots. Transparent films also exhibited promising water vapor and oxygen barrier properties, outperforming low-density polyethylene (LPDE) films. Several potential applications can be envisioned such as films for fatty food preservation, biofilms for sun screening, and biomedical films for free-radical inhibition.

3.
J Colloid Interface Sci ; 483: 60-66, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27544448

RESUMO

Alginate nanofibers with an average diameter of 75nm have been prepared by the electrospinning process. In addition, the spinnability of the solutions in the presence of the gold precursor HAuCl4 was investigated. At low concentrations of HAuCl4 well-formed nanofibers were produced, whereas as its concentration increases the nanofibrous mats present an increased number of bead-like defects. Herein, the in situ preparation of gold nanoparticles (Au NPs) is discussed since sodium alginate (SA) acts as the reducing agent and a mechanism is proposed in order to explain the bead-effect as well as the surface morphology of the alginate fibers decorated with Au NPs.

4.
Sci Rep ; 5: 14019, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26357936

RESUMO

Here we show that macrozwitterions of poly(ethyl 2-cyanoacrylate), commonly called Super Glue, can easily assemble into long and well defined fibers by electrospinning. The resulting fibrous networks are thermally treated on glass in order to create transparent coatings whose superficial morphology recalls the organization of the initial electrospun mats. These textured coatings are characterized by low liquid adhesion and anti-staining performance. Furthermore, the low friction coefficient and excellent scratch resistance make them attractive as solid lubricants. The inherent texture of the coatings positively affects their biocompatibility. In fact, they are able to promote the proliferation and differentiation of myoblast stem cells. Optically-transparent and biocompatible coatings that simultaneously possess characteristics of low water contact angle hysteresis, low friction and mechanical robustness can find application in a wide range of technological sectors, from the construction and automotive industries to electronic and biomedical devices.

5.
Expert Opin Drug Deliv ; 12(4): 525-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25297510

RESUMO

INTRODUCTION: The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. METHODS: The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. RESULTS: Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. CONCLUSION: Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.


Assuntos
Plaquetas/metabolismo , Regeneração/fisiologia , Pele/metabolismo , Alicerces Teciduais , Alginatos/química , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Cicatrização/fisiologia
6.
Langmuir ; 30(10): 2896-902, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24564574

RESUMO

Technologies that are able to handle microvolumes of liquids, such as microfluidics and liquid marbles, are attractive for applications that include miniaturized biological and chemical reactors, sensors, microactuators, and drug delivery systems. Inspired from natural fibrous envelopes, here, we present an innovative approach for liquid encapsulation and manipulation using electrospun nanofibers. We demonstrated the realization of non-wetting soft solids consisting of a liquid core wrapped in a hydrophobic fibrillar cloak of a fluoroacrylic copolymer and cellulose acetate. By properly controlling the wetting and mechanical properties of the fibers, we created final architectures with tunable mechanical robustness that were stable on a wide range of substrates (from paper to glass) and floated on liquid surfaces. Remarkably, the realized fiber-coated drops endured vortex mixing in a continuous oil phase at high stirring speed without bursting or water losses, favoring mixing processes inside the entrapped liquid volume. Moreover, the produced cloak can be easily functionalized by incorporating functional particles, active molecules, or drugs inside the nanofibers.


Assuntos
Biomimética/métodos , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Nanofibras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA