Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 760830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402315

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits extensive inter- and intrastrain genetic diversity. As we have previously described, there are some genetic differences between the parental G strain and its clone D11, which was isolated by the limiting dilution method and infection of cultured mammalian cells. Electrophoretic karyotyping and Southern blot hybridization of chromosomal bands with specific markers revealed chromosome length polymorphisms of small size with additional chromosomal bands in clone D11 and the maintenance of large syntenic groups. Both G strain and clone D11 belong to the T. cruzi lineage TcI. Here, we designed intraspecific array-based comparative genomic hybridization (aCGH) to identify chromosomal regions harboring copy-number variations between clone D11 and the G strain. DNA losses were more extensive than DNA gains in clone D11. Most alterations were flanked by repeated sequences from multigene families that could be involved in the duplication and deletion events. Several rearrangements were detected by chromoblot hybridization and confirmed by aCGH. We have integrated the information of genomic sequence data obtained by aCGH to the electrophoretic karyotype, allowing the reconstruction of possible recombination events that could have generated the karyotype of clone D11. These rearrangements may be explained by unequal crossing over between sister or homologous chromatids mediated by flanking repeated sequences and unequal homologous recombination via break-induced replication. The genomic changes detected by aCGH suggest the presence of a dynamic genome that responds to environmental stress by varying the number of gene copies and generating segmental aneuploidy.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Células Clonais , Hibridização Genômica Comparativa/métodos , DNA , Genoma de Protozoário , Mamíferos/genética , Trypanosoma cruzi/genética
2.
mSphere ; 4(4)2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391280

RESUMO

The genetic stability of every living organism depends on accurate DNA replication and repair systems. Here, we investigated the Aspergillus fumigatusMSH2 mismatch repair (MMR) gene MshA and how it impacts virulence and the evolution of azole resistance. We examined mshA gene variation in 62 environmental and clinical A. fumigatus strains. We have observed 12 strains with variants (18.2%), and 8 strains among them showed missense variants. We demonstrated that A. fumigatusmshA null mutants are haploid and have conserved karyotypes with discrete gross chromosomal rearrangements. The ΔmshA strains are not sensitive to several DNA-damaging agents. The lack of mshA caused a significant reduction of virulence of A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonella Wild-type and ΔmshA populations did not show any significant changes in drug resistance acquisition after they were transferred 10 times in minimal medium in the absence of any stress. However, these populations rapidly acquired virulence in the ΔmshA background and high levels of resistance to posaconazole in the presence of this drug (at least 200-fold-higher levels of resistance than those derived from the wild-type strain). Taken together, these results suggest that genetic instability caused by ΔmshA mutations can confer an adaptive advantage, mainly increasing posaconazole resistance and virulence acquisition.IMPORTANCE Invasive aspergillosis (IA) has emerged as one of the most common life-threatening fungal diseases in immunocompromised patients, with mortality rates as high as 90%. Systemic fungal infections such as IA are usually treated with triazoles; however, epidemiological research has shown that the prevalence of azole-resistant Aspergillus fumigatus isolates has increased significantly over the last decade. There is very little information about the importance of genomic stability for A. fumigatus population structure, azole resistance, and virulence. Here, we decided to investigate whether the mismatch repair system could influence A. fumigatus azole resistance and virulence, focusing on one of the components of this system, MSH2 Although the mutation frequency of mshA (the A. fumigatusMSH2 homologue) is low in environmental and clinical isolates, our results indicate that loss of mshA function can provide increased azole resistance and virulence when selected for. These results demonstrate the importance of genetic instability in A. fumigatus as a possible mechanism of evolving azole resistance and establishing fitness in the host.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Farmacorresistência Fúngica , Proteína 2 Homóloga a MutS/genética , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA , Feminino , Proteínas Fúngicas/genética , Larva/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Neutropenia , Homologia de Sequência , Virulência
3.
G3 (Bethesda) ; 8(1): 265-278, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150592

RESUMO

Genetic stability is extremely important for the survival of every living organism, and a very complex set of genes has evolved to cope with DNA repair upon DNA damage. Here, we investigated the Aspergillus fumigatus AtmA (Ataxia-telangiectasia mutated, ATM) and AtrA kinases, and how they impact virulence and the evolution of azole resistance. We demonstrated that A. fumigatus atmA and atrA null mutants are haploid and have a discrete chromosomal polymorphism. The ΔatmA and ΔatrA strains are sensitive to several DNA-damaging agents, but surprisingly both strains were more resistant than the wild-type strain to paraquat, menadione, and hydrogen peroxide. The atmA and atrA genes showed synthetic lethality emphasizing the cooperation between both enzymes and their consequent redundancy. The lack of atmA and atrA does not cause any significant virulence reduction in A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonela Wild-type, ΔatmA, and ΔatrA populations that were previously transferred 10 times in minimal medium (MM) in the absence of voriconazole have not shown any significant changes in drug resistance acquisition. In contrast, ΔatmA and ΔatrA populations that similarly evolved in the presence of a subinhibitory concentration of voriconazole showed an ∼5-10-fold increase when compared to the original minimal inhibitory concentration (MIC) values. There are discrete alterations in the voriconazole target Cyp51A/Erg11A or cyp51/erg11 and/or Cdr1B efflux transporter overexpression that do not seem to be the main mechanisms to explain voriconazole resistance in these evolved populations. Taken together, these results suggest that genetic instability caused by ΔatmA and ΔatrA mutations can confer an adaptive advantage, mainly in the intensity of voriconazole resistance acquisition.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Voriconazol/farmacologia , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Instabilidade Genômica , Humanos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/mortalidade , Aspergilose Pulmonar Invasiva/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Mutação , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Análise de Sobrevida , Virulência
4.
PLoS Negl Trop Dis ; 9(11): e0004216, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565791

RESUMO

BACKGROUND: The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. METHODOLOGY/ PRINCIPAL FINDINGS: Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. CONCLUSION/SIGNIFICANCE: We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection.


Assuntos
Adesão Celular , Endocitose , Proteínas de Membrana/genética , Trypanosoma cruzi/genética , Animais , Sinalização do Cálcio , Linhagem Celular , Sequência Conservada , Humanos , Proteínas de Membrana/análise , Microscopia de Fluorescência , Família Multigênica , Ligação Proteica , Estrutura Terciária de Proteína , Trypanosoma cruzi/química , Trypanosoma cruzi/fisiologia
5.
BMC Genomics ; 16: 376, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962381

RESUMO

BACKGROUND: Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes. RESULTS: We identified five different retrotransposon families (four LTR-like and one LINE-like element) in the genomes of three Paracoccidioides isolates. Retrotransposons were present in all of the genomes analyzed. P. brasiliensis and P. lutzii species harbored the same retrotransposon lineages but differed in their copy numbers. In the Pb01, Pb03 and Pb18 genomes, the number of LTR retrotransposons was higher than the number of LINE-like elements, and the LINE-like element RtPc5 was transcribed in Paracoccidioides lutzii (Pb01) but could not be detected in P. brasiliensis (Pb03 and Pb18) by semi-quantitative RT-PCR. CONCLUSION: Five new potentially active retrotransposons have been identified in the genomic assemblies of the Paracoccidioides species complex using a combined computational and experimental approach. The distribution across the two known species, P. brasiliensis and P. lutzii, and phylogenetics analysis indicate that these elements could have been acquired before speciation occurred. The presence of active retrotransposons in the genome may have implications regarding the evolution and genetic diversification of the Paracoccidioides genus.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Paracoccidioides/genética , Retroelementos/genética , Análise por Conglomerados , Etiquetas de Sequências Expressas/metabolismo , Genômica , Anotação de Sequência Molecular , Paracoccidioides/classificação , Filogenia , Sequências Repetidas Terminais/genética , Transcrição Gênica
6.
Med Mycol ; 53(2): 165-70, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25541559

RESUMO

Studies comparing Paracoccidioides brasiliensis and Paracoccidioides lutzii have shown that these fungi have significant genomic differences that may have implications in the clinical manifestation, diagnosis, and treatment of paracoccidioidomycosis caused by them. Thus, molecular typing methods are required that can distinguish between various species of Paracoccidioides. The aim of this study was to explore the potential use as molecular markers of the transposable elements Trem A-H recently identified and characterized in the genus Paracoccidioides as a means of differentiating the species. We take advantage of the abundance and distribution of these transposons in the Paracoccidioides genomes to develop a simple and highly reproducible polymerase chain reaction (PCR)-based technique. Furthermore we compare the performance of this test with two other molecular markers already in use to identify these fungi.


Assuntos
Elementos de DNA Transponíveis/genética , Tipagem Molecular/métodos , Técnicas de Tipagem Micológica/métodos , Paracoccidioides/classificação , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/microbiologia , Humanos , Paracoccidioides/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA