Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 354: 141700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490615

RESUMO

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Assuntos
Microalgas , Purificação da Água , Humanos , Águas Residuárias , Dióxido de Carbono/metabolismo , Ecossistema , Odorantes , Microalgas/metabolismo , Biotecnologia , Purificação da Água/métodos , Biomassa , Nutrientes
2.
Sci Total Environ ; 878: 163005, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36965731

RESUMO

A novel approach for the treatment of VOCs (by using toluene used as a model compound) and the simultaneous conversion of carbon dioxide into valuable biomass has been investigated by using a combination of an activated sludge moving bed bioreactor (MBBR) and an algal photo-bioreactor (PBR). The first unit (MBBR, R1) promoted toluene removal up to 99.9 % for inlet load (IL) of 119.91 g m-3 d-1. The CO2 resulting from the degradation of toluene was then fixed in PBR (R2), with a fixation rate up to 95.8 %. The CO2 uptake was promoted by algae, with average production of algal biomass in Stage VI of 1.3 g L-1 d-1. In the contest of the circular economy, alternative sources of nutrients have been assessed, using synthetic urban wastewater (UWW) and dairy wastewater (DWW) for liquid renewal. The produced biomass with DWW showed a high lipid content, with a maximum productivity of 450.25 mg of lipids L-1 d-1. The solution proposed may be thus regarded as a sustainable and profitable strategy for VOCs treatment in a circular economy perspective.


Assuntos
Microalgas , Águas Residuárias , Reatores Biológicos , Biofilmes , Esgotos , Dióxido de Carbono/metabolismo , Biomassa , Biocombustíveis , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA