Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491707

RESUMO

In this work, we present a systematic comparison of the results obtained from the low-frequency Barkhausen noise recordings in nanocrystalline samples with those from the numerical simulations of the random-field Ising model systems. We performed measurements at room temperature on a field-driven metallic glass stripe made of VITROPERM 800 R, a nanocrystalline iron-based material with an excellent combination of soft and magnetic properties, making it a cutting-edge material for a wide range of applications. Given that the Barkhausen noise emissions emerging along a hysteresis curve are stochastic and depend in general on a variety of factors (such as distribution of disorder due to impurities or defects, varied size of crystal grains, type of domain structure, driving rate of the external magnetic field, sample shape and temperature, etc.), adequate theoretical modeling is essential for their interpretation and prediction. Here the Random field Ising model, specifically its athermal nonequilibrium version with the finite driving rate, stands out as an appropriate choice due to the material's nanocrystalline structure and high Curie temperature. We performed a systematic analysis of the signal properties and magnetization avalanches comparing the outcomes of the numerical model and experiments carried out in a two-decade-wide range of the external magnetic field driving rates. Our results reveal that with a suitable choice of parameters, a considerable match with the experimental results is achieved, indicating that this model can accurately describe the Barkhausen noise features in nanocrystalline samples.

2.
Geroscience ; 46(2): 1909-1926, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37775702

RESUMO

Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3-V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.


Assuntos
Callithrix , Cárie Dentária , Humanos , Animais , Idoso , Pessoa de Meia-Idade , Callithrix/genética , Callithrix/microbiologia , Saúde Bucal , RNA Ribossômico 16S/genética , Qualidade de Vida , Envelhecimento
3.
J Oral Biol Craniofac Res ; 13(6): 693-703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719063

RESUMO

Salivary gland (SG) extracellular matrix (ECM) has a major influence on tissue development, homeostasis, and tissue regeneration after injury. During aging, disease, and physical insult, normal remodeling of the SG microenvironment (i.e. ECM) becomes dysregulated, leading to alterations in matrix composition which disrupt tissue architecture/structure, alter cell activity, and negatively impact gland function. Matrix metalloproteinases (MMPs) are a large and diverse family of metalloendopeptidases which play a major role in matrix degradation and are intimately involved in regulating development and cell function; dysregulation of these enzymes leads to the production of a fibrotic matrix. In the SG this altered fibrotic ECM (or cell microenvironment) negatively impacts normal cell function and the effectiveness of gene and stem cell therapies which serve as a foundation for many SG regenerative therapies. For this reason, prospective regenerative strategies should prioritize the maintenance and/or restoration of a healthy SG ECM. Mesenchymal stem cells (MSCs) have great potential for mitigating damage to the SG microenvironment by ameliorating inflammation, reducing fibrosis, and repairing the damaged milieu of extracellular regulatory cues, including the matrix. This review addresses our current understanding of the impact of aging and disease on the SG microenvironment and suggests critical deficiencies and opportunities in ECM-targeted therapeutic interventions.

4.
Int J Oral Sci ; 15(1): 18, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165024

RESUMO

Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Glândulas Salivares , Qualidade de Vida , Regeneração , Células-Tronco
5.
Front Nutr ; 9: 906659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898710

RESUMO

Background: Published data regarding the impact of obesity on COVID-19 outcomes are inconsistent. However, in most studies, body composition was assessed using body mass index (BMI) alone, thus neglecting the presence and distribution of adipose tissue. Therefore, we aimed to investigate the impact of body and visceral fat on COVID-19 outcomes. Methods: Observational, prospective cohort study included 216 consecutive COVID-19 patients hospitalized at University Clinical Center Kragujevac (Serbia) from October to December 2021. Body composition was assessed using the BMI, body fat percentage (%BF), and visceral fat (VF) via bioelectrical impedance analysis (BIA). In addition to anthropometric measurements, variables in the research were socio-demographic and medical history data, as well as admission inflammatory biomarkers. Primary end-points were fatal outcomes and intensive care unit (ICU) admission. Results: The overall prevalence of obesity was 39.3% according to BMI and 50.9% according to % BF, while 38.4% of patients had very high VF levels. After adjusting odds ratio values for cofounding variables and obesity-related conditions, all three anthropometric parameters were significant predictors of primary end-points. However, we note that % BF and VF, compared to BMI, were stronger predictors of both mortality (aOR 3.353, aOR 3.05, and aOR 2.387, respectively) and ICU admission [adjusted odds ratio (aOR) 7.141, aOR 3.424, and aOR 3.133, respectively]. Conclusion: Obesity is linked with COVID-19 mortality and ICU admission, with BIA measurements being stronger predictors of outcome compared to BMI use alone.

6.
Stem Cell Res Ther ; 13(1): 306, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841112

RESUMO

BACKGROUND: Current treatments for salivary gland (SG) hypofunction are palliative and do not address the underlying cause or progression of the disease. SG-derived stem cells have the potential to treat SG hypofunction, but their isolation is challenging, especially when the tissue has been damaged by disease or irradiation for head and neck cancer. In the current study, we test the hypothesis that multipotent bone marrow-derived mesenchymal stem cells (BM-MSCs) in a rat model are capable of trans-differentiating to the SG epithelial cell lineage when induced by a native SG-specific extracellular matrix (SG-ECM) and thus may be a viable substitute for repairing damaged SGs. METHODS: Rat BM-MSCs were treated with homogenates of decellularized rat SG-ECM for one hour in cell suspension and then cultured in tissue culture plates for 7 days in growth media. By day 7, the cultures contained cell aggregates and a cell monolayer. The cell aggregates were hand-selected under a dissecting microscope, transferred to a new tissue culture dish, and cultured for an additional 7 days in epithelial cell differentiation media. Cell aggregates and cells isolated from the monolayer were evaluated for expression of SG progenitor and epithelial cell specific markers, cell morphology and ultrastructure, and ability to form SG-like organoids in vivo. RESULTS: The results showed that this approach was very effective and guided the trans-differentiation of a subpopulation of CD133-positive BM-MSCs to the SG epithelial cell lineage. These cells expressed amylase, tight junction proteins (Cldn 3 and 10), and markers for SG acinar (Aqp5 and Mist 1) and ductal (Krt 14) cells at both the transcript and protein levels, produced intracellular secretory granules which were morphologically identical to those found in submandibular gland, and formed SG-like organoids when implanted in the renal capsule in vivo. CONCLUSIONS: The results of this study suggest the feasibility of using autologous BM-MSCs as an abundant source of stem cells for treating SG hypofunction and restoring the production of saliva in these patients.


Assuntos
Células-Tronco Mesenquimais , Organoides , Animais , Diferenciação Celular , Transdiferenciação Celular , Matriz Extracelular/metabolismo , Ratos , Glândulas Salivares
7.
Matrix Biol ; 111: 108-132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752272

RESUMO

Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.


Assuntos
Envelhecimento , Proteína Rica em Cisteína 61 , Células-Tronco Mesenquimais , Osteogênese , Nicho de Células-Tronco , Adulto , Envelhecimento/genética , Animais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos
8.
Mutagenesis ; 37(3-4): 203-212, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35524945

RESUMO

Bearing in the mind that a variety of agents can contribute to genome instability, including viral infections, the aim of this study was to analyze DNA damage in hospitalized COVID-19 patients and its relationship with certain laboratory parameters. The potential impact of applied therapy and chest X-rays on DNA damage was also estimated. The study population included 24 severely COVID-19 patients and 15 healthy control subjects. The level of DNA damage was measured as genetic damage index (GDI) by comet assay. The standard laboratory methods and certified enzymatic reagents for the appropriate autoanalyzers were performed for the determination of the biochemical and hematological parameters. COVID-19 patients had significantly higher level of DNA damage compared with control subjects. The absolute number of neutrophil leukocytes was statistically higher, while the absolute number of lymphocytes was statistically lower in COVID-19 patients than in healthy controls. The analysis of the relationship between DNA damage and laboratory parameters indicated that GDI was positively correlated with interleukin 6 (IL-6) concentration and negatively with platelet count in COVID-19 patients. The level of DNA damage was slightly higher in female patients, in whom it was demonstrated a positive correlation of GDI with C-reactive protein (CRP) and procalcitonin. Likewise, there was a negative relationship of GDI and platelet count, and positive relationship of GDI and activated partial thromboplastin time (aPTT) in female population. The applied therapy (antibiotics, corticosteroid, anticoagulant, and antiviral therapy) as well as chest X rays has been shown to have genotoxic potential. The level of DNA damage significantly corresponds to the inflammatory markers and parameters of hemostasis in COVID-19 patients. In conclusion, inflammation, smoking habit, applied therapy, and chest X rays contribute to a higher level of DNA damage in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Feminino , Interleucina-6 , Pró-Calcitonina , Proteína C-Reativa/análise , Linfócitos/química , Biomarcadores , Antivirais , Hemostasia , Dano ao DNA , Antibacterianos , Anticoagulantes
9.
Inflamm Res ; 71(3): 331-341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35157090

RESUMO

OBJECTIVE AND DESIGN: Perturbations of peripheral T cell homeostasis and dysregulation of the immune response to SARS-CoV-2, especially in severely ill patients, were observed. The aim of this study was to analyze the cytokine producing ability of peripheral blood cells from severely ill COVID-19 patients upon non-specific in vitro stimulation with phytohemagglutinin (PHA). Possible associations of cytokine levels with patients' age and gender, glucocorticosteroid therapy, as well as the trend of the inflammatory process at the time of sampling (increased or decreased) were also analyzed. SUBJECTS AND METHODS: The study included 23 COVID-19 patients and 17 healthy control subjects. The concentrations of selected Th1/Th2/Th9/Th17/Th22 cytokines were determined using a multi-analyte flow assay kit. RESULTS: Our results showed that peripheral blood cells from severely ill COVID-19 patients had a much reduced ability to produce cytokines in comparison to healthy controls. When inflammation was raised, blood cells produced more IL-6 and IL-17, which led to increases of some Th17/Th1 and Th17/Th2 ratios, skewing towards the Th17 type of response. The methylprednisolone used in the treatment of patients with COVID-19 influences the production of several cytokines in dose dependent manner. CONCLUSION: Our results indicate that the stage of the inflammatory process at the time of sampling and the dose of the applied glucocorticosteroid therapy might influence cytokine producing ability upon non-specific stimulation of T cells in vitro.


Assuntos
COVID-19/sangue , Citocinas/sangue , SARS-CoV-2 , Adulto , Idoso , Anti-Inflamatórios/uso terapêutico , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Células Cultivadas , Feminino , Glucocorticoides/uso terapêutico , Humanos , Masculino , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Mitógenos/farmacologia , Fito-Hemaglutininas/farmacologia , Tratamento Farmacológico da COVID-19
10.
Sci Rep ; 10(1): 19071, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149250

RESUMO

The immature phenotype of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) is a major limitation to the use of these valuable cells for pre-clinical toxicity testing and for disease modeling. Here we tested the hypothesis that human perinatal stem cell derived extracellular matrix (ECM) promotes hiPSC-CM maturation to a greater extent than mouse cell derived ECM. We refer to the human ECM as Matrix Plus (Matrix Plus) and compare effects to commercially available mouse ECM (Matrigel). hiPSC-CMs cultured on Matrix Plus mature functionally and structurally seven days after thaw from cryopreservation. Mature hiPSC-CMs showed rod-shaped morphology, highly organized sarcomeres, elevated cTnI expression and mitochondrial distribution and function like adult cardiomyocytes. Matrix Plus also promoted mature hiPSC-CM electrophysiological function and monolayers' response to hERG ion channel specific blocker was Torsades de Pointes (TdP) reentrant arrhythmia activations in 100% of tested monolayers. Importantly, Matrix Plus enabled high throughput cardiotoxicity screening using mature human cardiomyocytes with validation utilizing reference compounds recommended for the evolving Comprehensive In Vitro Proarrhythmia Assay (CiPA) coordinated by the Health and Environmental Sciences Institute (HESI). Matrix Plus offers a solution to the commonly encountered problem of hiPSC-CM immaturity that has hindered implementation of these human based cell assays for pre-clinical drug discovery.


Assuntos
Líquido Amniótico/citologia , Técnicas de Reprogramação Celular/métodos , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/citologia , Líquido Amniótico/metabolismo , Diferenciação Celular , Forma Celular , Células Cultivadas , Colágeno/farmacologia , Combinação de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/farmacologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fenótipo , Proteoglicanas/farmacologia , Testes de Toxicidade/métodos , Troponina I/genética , Troponina I/metabolismo
11.
Tissue Eng Part A ; 26(17-18): 935-938, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32164476

RESUMO

Nerve tissue regeneration continues to represent an intractable obstacle to realizing the promise of tissue engineering. Although neurobiology works to shed light on the mechanisms governing neuronal growth and repair, considerable technical gaps remain that hinder progress. Chief among these is the absence of an appropriate culture environment to faithfully reproduce the neuronal niche ex vivo. We propose that the various multipotent cells found in the oral cavity may represent an important yet underutilized resource for preparing such neurogenic microenvironments. Similar to those of nerve tissue, these cell populations are of ectodermal origin and have clinically demonstrated neurogenic potential. Although there is a lack of consensus on whether putative types of oral and craniofacial stem cells constitute distinct populations, their contribution to neural tissue engineering may be twofold: as a cellular feedstock for neoneurogenesis and for the production of specialized in vitro environments for neurogenic differentiation, phenotype maintenance, and use in therapeutic applications. Impact statement We propose that addressing gaps in understanding the neurogenic role of dental stem cells and their microenvironment may yield efficient and reliable strategies for long-term neuronal cell culture and open new avenues for neural regeneration in both dental, nerve, and other tissues.


Assuntos
Regeneração Nervosa , Células-Tronco , Engenharia Tecidual , Diferenciação Celular , Humanos , Neurogênese
12.
Matrix Biol Plus ; 8: 100044, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33543037

RESUMO

Mesenchymal stem cells (MSCs) are highly responsive to cues in the microenvironment (niche) that must be recapitulated ex vivo to study their authentic behavior. In this study, we hypothesized that native bone marrow (BM)- and adipose (AD)-derived extracellular matrices (ECM) were unique in their ability to control MSC behavior. To test this, we compared proliferation and differentiation of bone marrow (BM)-derived MSCs when maintained on native decellularized ECM produced by BM versus AD stromal cells (i.e. BM- versus AD-ECM). We found that both ECMs contained similar types of collagens but differed in the relative abundance of each. Type VI collagen was the most abundant (≈60% of the total collagen present), while type I was the next most abundant at ≈30%. These two types of collagen were found in nearly equal proportions in both ECMs. In contrast, type XII collagen was almost exclusively found in AD-ECM, while types IV and V were only found in BM-ECM. Physically and mechanically, BM-ECM was rougher and stiffer, but less adhesive, than AD-ECM. During 14 days in culture, both ECMs supported BM-MSC proliferation better than tissue culture plastic (TCP), although MSC-related surface marker expression remained relatively high on all three culture surfaces. BM-MSCs cultured in osteogenic (OS) differentiation media on BM-ECM displayed a significant increase in calcium deposition in the matrix, indicative of osteogenesis, while BM-MSCs cultured on AD-ECM in the presence of adipogenic (AP) differentiation media showed a significant increase in Oil Red O staining, indicative of adipogenesis. Further, culture on BM-ECM significantly increased BM-MSC-responsiveness to rhBMP-2 (an osteogenic inducer), while culture on AD-ECM enhanced responsiveness to rosiglitazone (an adipogenic inducer). These findings support our hypothesis and indicate that BM- and AD-ECMs retain unique elements, characteristic of their tissue-specific microenvironment (niche), which promote retention of MSC differentiation state (i.e. "stemness") during expansion and direct cell response to lineage-specific inducers. This study provides a new paradigm for precisely controlling MSC fate to a desired cell lineage for tissue-specific cell-based therapies.

13.
Nanomedicine ; 20: 102025, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31170511

RESUMO

Carbon nanotubes (CNTs) hold great potential as drug delivery transporters given their large drug-binding surface area. Herein, we designed novel, multi-walled, discrete CNTs (dMWCNTs), PEGylated dMWCNTs (PEG-dMWCNTs), and bone-targeting (BT), alendronate-conjugated PEG-dMWCNTs (BT-PEG-dMWCNTs). Using zeta potential, thermogravimetric analysis, TEM, SEM, and FTIR, dMWCNTs were characterized as individual, uniform, and stable. Drug binding and release assays validated dMWCNTs as effective doxorubicin (DOX) transporters. The mass ratio of DOX loading onto dMWCNTs was 35% wt/wt with a ~95% wt/wt efficiency. DOX release was ~51% w/w after 48 hours. Neoplastic transformation, chromosomal aberration, and cytotoxicity assays, confirmed biocompatibility for all dMWCNTs. PEG-dMWCNTs were well tolerated and modulated drug pharmacokinetics in mice. In mice with Burkitt's lymphoma, DOX-loaded PEG-dMWCNTs and BT-PEG-dMWCNTs reduced tumor burden and increased survival similarly to free drug. Importantly, DOX toxicity was abrogated when DOX was loaded onto PEG-dMWCNTs or BT-PEG-dMWCNTs. Overall, PEG-dMWCNTs and BT-PEG-dMWCNTs represent a promising new nanocarrier platform.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Hematológicas/tratamento farmacológico , Nanotubos de Carbono/química , Células 3T3-L1 , Animais , Osso e Ossos/metabolismo , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Camundongos , Nanotubos de Carbono/ultraestrutura , Polietilenoglicóis/química , Distribuição Tecidual
14.
15.
Stem Cell Res Ther ; 8(1): 239, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29078802

RESUMO

BACKGROUND: Degenerative diseases are a major public health concern for the aging population and mesenchymal stem cells (MSCs) have great potential for treating many of these diseases. However, the quantity and quality of MSCs declines with aging, limiting the potential efficacy of autologous MSCs for treating the elderly population. METHODS: Human bone marrow (BM)-derived MSCs from young and elderly donors were obtained and characterized using standard cell surface marker criteria (CD73, CD90, CD105) as recommended by the International Society for Cellular Therapy (ISCT). The elderly MSC population was isolated into four subpopulations based on size and stage-specific embryonic antigen-4 (SSEA-4) expression using fluorescence-activated cell sorting (FACS), and subpopulations were compared to the unfractionated young and elderly MSCs using assays that evaluate MSC proliferation, quality, morphology, intracellular reactive oxygen species, ß-galactosidase expression, and adenosine triphosphate (ATP) content. RESULTS: The ISCT-recommended cell surface markers failed to detect any differences between young and elderly MSCs. Here, we report that elderly MSCs were larger in size and displayed substantially higher concentrations of intracellular reactive oxygen species and ß-galactosidase expression and lower amounts of ATP and SSEA-4 expression. Based on these findings, cell size and SSEA-4 expression were used to separate the elderly MSCs into four subpopulations by FACS. The original populations (young and elderly MSCs), as well as the four subpopulations, were then characterized before and after culture on tissue culture plastic and BM-derived extracellular matrix (BM-ECM). The small SSEA-4-positive subpopulation representing ~ 8% of the original elderly MSC population exhibited a "youthful" phenotype that was similar to that of young MSCs. The biological activity of this elderly subpopulation was inhibited by senescence-associated factors produced by the unfractionated parent population. After these "youthful" cells were isolated and expanded (three passages) on a "young microenvironment" (i.e., BM-ECM produced by BM cells from young donors), the number of cells increased ≈ 17,000-fold to 3 × 109 cells and retained their "youthful" phenotype. CONCLUSIONS: These results suggest that it is feasible to obtain large numbers of high-quality autologous MSCs from the elderly population and establish personal stem cell banks that will allow serial infusions of "rejuvenated" MSCs for treating age-related diseases.


Assuntos
Envelhecimento/fisiologia , Separação Celular/métodos , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/classificação , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Tamanho Celular , Senescência Celular , Expressão Gênica , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/classificação , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo , Transplante Autólogo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
16.
Stem Cell Res Ther ; 7(1): 176, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906056

RESUMO

BACKGROUND: Umbilical cord blood (UCB) not only contains hematopoietic stem cells (HSCs), but also non-hematopoietic stem cells (NHSCs) that are able to differentiate into a number of distinct cell types. Based on studies published to date, the frequency of NHSCs in UCB is believed to be very low. However, the isolation of these cells is primarily based on their adhesion to tissue culture plastic surfaces. METHODS AND RESULTS: In the current study, we demonstrate that this approach overlooks some of the extremely immature NHSCs because they lack the ability to adhere to plastic. Using a native extracellular matrix (ECM), produced by bone marrow (BM) stromal cells, the majority of the UCB-NHSCs attached within 4 h. The colony-forming unit fibroblast frequency of these cells was 1.5 × 104/108 mononuclear cells, which is at least 4000-fold greater than previously reported for UCB-NHSCs. The phenotype of these cells was fibroblast-like and different from those obtained by plastic adhesion; they formed embryonic body-like clusters that were OCT4-positive and expressed other human embryonic stem cell-related markers. Importantly, when implanted subcutaneously for 8 weeks into immunocompromised mice, these ECM-adherent and expanded NHSCs generated three germ layer-derived human tissues including muscle, fat, blood vessel, bone, gland, and nerve. Moreover, injection of these cells into muscle damaged by cryoinjury significantly accelerated muscle regeneration. CONCLUSIONS: These results indicate that UCB may be a virtually unlimited source of NHSCs when combined with isolation and expansion on ECM. NHSCs may be a practical alternative to embryonic stem cells for a number of therapeutic applications.


Assuntos
Corpos Embrioides/transplante , Matriz Extracelular/química , Camadas Germinativas/citologia , Regeneração/genética , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Adesão Celular , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Matriz Extracelular/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Expressão Gênica , Camadas Germinativas/crescimento & desenvolvimento , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/lesões , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco/metabolismo
17.
Matrix Biol ; 52-54: 426-441, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26780725

RESUMO

For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células HeLa , Humanos , Células MCF-7 , Células-Tronco Mesenquimais/metabolismo , Poliestirenos/química , Nicho de Células-Tronco
18.
Stem Cell Res Ther ; 6: 235, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620283

RESUMO

INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BM-MSCs) for clinical use should not be grown in media containing fetal bovine serum (FBS), because of serum-related concerns over biosafety and batch-to-batch variability. Previously, we described the preparation and use of a cell-free native extracellular matrix (ECM) made by bone marrow cells (BM-ECM) which preserves stem cell properties and enhances proliferation. Here, we compare colony-forming ability and differentiation of MSCs cultured on BM-ECM with a commercially available matrix (CELLstart™) and tissue culture plastic (TCP) under serum-free conditions. METHODS: Primary MSCs from freshly isolated bone marrow-derived mononuclear cells or passaged MSCs (P1) were grown in serum-containing (SCM) or serum-free (SFM) media on BM-ECM, CELLstart™, or TCP substrates. Proliferation, cell composition (phenotype), colony-forming unit replication, and bone morphogenetic protein-2 (BMP-2) responsiveness were compared among cells maintained on the three substrates. RESULTS: Proliferation of primary BM-MSCs was significantly higher in SCM than SFM, irrespectively of culture substrate, suggesting that the expansion of these cells requires SCM. In contrast, passaged cells cultured on BM-ECM or CELLstart™ in SFM proliferated to nearly the same extent as cells in SCM. However, morphologically, those on BM-ECM were smaller and more aligned, slender, and long. Cells grown for 7 days on BM-ECM in SFM were 20-40 % more positive for MSC surface markers than cells cultured on CELLstart™. Cells cultured on TCP contained the smallest number of cells positive for MSC markers. MSC colony-forming ability in SFM, as measured by CFU-fibroblasts, was increased 10-, 9-, and 2-fold when P1 cells were cultured on BM-ECM, CELLstart™, and TCP, respectively. Significantly, CFU-adipocyte and -osteoblast replication of cells grown on BM-ECM was dramatically increased over those on CELLstart™ (2X) and TCP (4-7X). BM-MSCs, cultured in SFM and treated with BMP-2, retained their differentiation capacity better on BM-ECM than on either of the other two substrates. CONCLUSIONS: Our findings indicate that BM-ECM provides a unique microenvironment that supports the colony-forming ability of MSCs in SFM and preserves their stem cell properties. The establishment of a robust culture system, combining native tissue-specific ECM and SFM, provides an avenue for preparing significant numbers of potent MSCs for cell-based therapies in patients.


Assuntos
Diferenciação Celular , Meios de Cultura Livres de Soro , Matriz Extracelular , Células-Tronco Mesenquimais/citologia , Adulto , Proliferação de Células , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA