Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 26(5): 512-523, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441512

RESUMO

BACKGROUND: Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS: An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS: IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS: We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Cocultura , Proteína Antagonista do Receptor de Interleucina 1 , Macrófagos , Células-Tronco Mesenquimais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Técnicas de Cocultura/métodos , Diferenciação Celular , Inflamação/terapia , Inflamação/imunologia , Anti-Inflamatórios/farmacologia , Células THP-1
2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139026

RESUMO

Adipose-derived stem cells (ASCs) have been used as a therapeutic intervention for peripheral artery disease (PAD) in clinical trials. To further explore the therapeutic mechanism of these mesenchymal multipotent stromal/stem cells in PAD, this study was designed to test the effect of xenogeneic ASCs extracted from human adipose tissue on hypoxic endothelial cells (ECs) and terminal unfolded protein response (UPR) in vitro and in an atherosclerosis-prone apolipoprotein E-deficient mice (ApoE-/- mice) hindlimb ischemia model in vivo. ASCs were added to Cobalt (II) chloride-treated ECs; then, metabolic activity, cell migration, and tube formation were evaluated. Fluorescence-based sensors were used to assess dynamic changes in Ca2+ levels in the cytosolic- and endoplasmic reticulum (ER) as well as changes in reactive oxygen species. Western blotting was used to observe the UPR pathway. To simulate an acute-on-chronic model of PAD, ApoE-/- mice were subjected to a double ligation of the femoral artery (DLFA). An assessment of functional recovery after DFLA was conducted, as well as histology of gastrocnemius. Hypoxia caused ER stress in ECs, but ASCs reduced it, thereby promoting cell survival. Treatment with ASCs ameliorated the effects of ischemia on muscle tissue in the ApoE-/- mice hindlimb ischemia model. Animals showed less muscle necrosis, less inflammation, and lower levels of muscle enzymes after ASC injection. In vitro and in vivo results revealed that all ER stress sensors (BIP, ATF6, CHOP, and XBP1) were activated. We also observed that the expression of these proteins was reduced in the ASCs treatment group. ASCs effectively alleviated endothelial dysfunction under hypoxic conditions by strengthening ATF6 and initiating a transcriptional program to restore ER homeostasis. In general, our data suggest that ASCs may be a meaningful treatment option for patients with PAD who do not have traditional revascularization options.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Hipóxia/metabolismo , Resposta a Proteínas não Dobradas , Isquemia/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
3.
Front Immunol ; 14: 1228928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274791

RESUMO

Acute kidney injury (AKI) is characterized by a rapid reduction in renal function and glomerular filtration rate (GFR). The broadly used anti-cancer chemotherapeutic agent cisplatin often induces AKI as an adverse drug side effect. Therapies targeted at the reversal of AKI and its potential progression to chronic kidney disease or end-stage renal disease are currently insufficiently effective. Mesenchymal stromal cells (MSCs) possess diverse immunomodulatory properties that confer upon them significant therapeutic potential for the treatment of diverse inflammatory disorders. Human dermal MSCs expressing ATP-Binding Cassette member B5 (ABCB5) have shown therapeutic efficacy in clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. In preclinical studies, ABCB5+ MSCs have also shown to reverse metabolic reprogramming in polycystic kidney cells, suggesting a capacity for this cell subset to improve also organ function in kidney diseases. Here, we aimed to explore the therapeutic capacity of ABCB5+ MSCs to improve renal function in a preclinical rat model of cisplatin-induced AKI. First, the anti-apoptotic and immunomodulatory capacity was compared against research-grade adipose stromal cells (ASCs). Then, cross-species immunomodulatory capacity was checked, testing first inhibition of mitogen-driven peripheral blood mononuclear cells and then modulation of macrophage function. Finally, therapeutic efficacy was evaluated in a cisplatin AKI model. First, ABCB5+ MSCs suppressed cisplatin-induced apoptosis of human conditionally-immortalized proximal tubular epithelial cells in vitro, most likely by reducing oxidative stress. Second, ABCB5+ MSCs inhibited the proliferation of either human or rat peripheral blood mononuclear cells, in the human system via the Indoleamine/kynurenine axis and in the murine context via nitric oxide/nitrite. Third, ABCB5+ MSCs decreased TNF-α secretion after lipopolysaccharide stimulation and modulated phagocytosis and in both human and rat macrophages, involving prostaglandin E2 and TGF-ß1, respectively. Fourth, clinical-grade ABCB5+ MSCs grafted intravenously and intraperitoneally to a cisplatin-induced AKI murine model exerted modulatory effects on mRNA expression patterns toward an anti-inflammatory and pro-regenerative state despite an apparent lack of amelioration of renal damage at physiologic, metabolic, and histologic levels. Our results demonstrate anti-inflammatory and pro-regenerative effects of clinical grade ABCB5+ MSCs in vitro and in vivo and suggest potential therapeutic utility of this cell population for treatment or prevention of cisplatin chemotherapy-induced tissue toxicity.


Assuntos
Injúria Renal Aguda , Células-Tronco Mesenquimais , Humanos , Ratos , Camundongos , Animais , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Leucócitos Mononucleares/metabolismo , Rim/patologia , Células-Tronco Mesenquimais/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/terapia , Injúria Renal Aguda/patologia , RNA Mensageiro/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA