Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 118: 111419, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255020

RESUMO

Nanofiber materials are commonly used as delivery vehicles for dermatological drugs due to their high surface-area-to-volume ratio, porosity, flexibility, and reproducibility. In this study air-jet spinning was used as a novel and economic method to fabricate corn zein nanofiber meshes with model drugs of varying solubility, molecular weight and charge. The release profiles of these drugs were compared to their release from corn zein films to elucidate the effect of geometry and structure on drug delivery kinetics. In film samples, over 50% of drug was released after only 2 h. However, fiber samples exhibited more sustained release, releasing less than 50% after one day. FTIR, SEM, and DSC were performed on nanofibers and films before and after release of the drugs. Structural analysis revealed that the incorporation of model drugs into the fibers would transform the zein proteins from a random coil network to a more alpha helical structure. Upon release, the protein fiber reverted to its original random coil network. In addition, thermal analysis indicated that fibers can protect the drug molecules in high temperature above 160 °C, while drugs within films will degrade below 130 °C. These findings can likely be attributed to the mechanical infiltration of the drug molecules into the ordered structure of the zein fibers during their solution fabrication. The slow release from fiber samples can be attributed to this biophysical interaction, illustrating that release is dictated by more than diffusion in protein-based carriers. The controlled release of a wide variety of drugs from the air-jet spun corn zein nanofiber meshes demonstrates their success as drug delivery vehicles that can potentially be incorporated into different biological materials in the future.


Assuntos
Nanofibras , Preparações Farmacêuticas , Zeína , Materiais Biocompatíveis , Reprodutibilidade dos Testes , Zea mays
2.
Int J Mol Sci ; 19(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890756

RESUMO

Nanoparticles are particles that range in size from about 1⁻1000 nanometers in diameter, about one thousand times smaller than the average cell in a human body. Their small size, flexible fabrication, and high surface-area-to-volume ratio make them ideal systems for drug delivery. Nanoparticles can be made from a variety of materials including metals, polysaccharides, and proteins. Biological protein-based nanoparticles such as silk, keratin, collagen, elastin, corn zein, and soy protein-based nanoparticles are advantageous in having biodegradability, bioavailability, and relatively low cost. Many protein nanoparticles are easy to process and can be modified to achieve desired specifications such as size, morphology, and weight. Protein nanoparticles are used in a variety of settings and are replacing many materials that are not biocompatible and have a negative impact on the environment. Here we attempt to review the literature pertaining to protein-based nanoparticles with a focus on their application in drug delivery and biomedical fields. Additional detail on governing nanoparticle parameters, specific protein nanoparticle applications, and fabrication methods are also provided.


Assuntos
Tecnologia Biomédica/métodos , Nanopartículas/química , Polímeros/química , Proteínas/química , Sistemas de Liberação de Medicamentos , Humanos
3.
Int J Biol Macromol ; 104(Pt A): 919-928, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28666828

RESUMO

Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Líquidos Iônicos/química , Seda/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA