Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941107

RESUMO

Advances in laser and optoelectronic technologies have brought the general concept of optomechanical manipulation to the level of standard biophysical tools, paving the way towards controlled experiments and measurements of tiny mechanical forces. Recent developments in direct laser writing (DLW) have enabled the realization of new types of micron-scale optomechanical tools, capable of performing designated functions. Here we further develop the concept of DLW-fabricated optomechanically-driven tools and demonstrate full-3D manipulation capabilities over biological objects. In particular, we resolved the long-standing problem of out-of-plane rotation in a pure liquid, which was demonstrated on a living cell, clamped between a pair of forks, designed for efficient manipulation with holographic optical tweezers. The demonstrated concept paves the way for the realization of flexible tools for performing on-demand functions over biological objects, such as cell tomography and surgery to name just few.

2.
Nano Lett ; 18(8): 5024-5029, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29949377

RESUMO

The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, for which precise control over mechanical path and stability is required. Although conventional optical tweezers are based on refractive optics, the development of compact trapping devices that could be integrated within fluid cells is in high demand. Here, a plasmonic polarization-sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges in trapping objects in the axial direction outside the depth of focus, bifocal Fresnel meta-lens demonstrates the capability to manipulate a bead along a 4 µm line. An additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled the accurate mapping of optical potentials via a particle-tracking algorithm. Auxiliary micro- and nanostructures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including transport, trapping, and sorting, which are in high demand for lab-on-a-chip applications and many others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA