Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16859, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207405

RESUMO

Prokaryotic communities inhabiting surface waters of temperate areas exhibit patterns of seasonal succession. Generally, studies describing these temporal changes are not performed in the proximity to the coast. In the present study, temporal variation of these communities was determined in surface waters at two stations located in the close proximity to the eastern shore of the northern Adriatic Sea. Sequencing of the V4 region of the 16S rRNA gene identified the highest community richness in December with distinct shifts in community structure between periods from April to May, June to October, and November to March. Temperature was shown to be the main environmental force explaining community temporal variation. The NS5 marine group, uncultured Cryomorphaceae, SAR86 clade, and Synechococcus were present throughout the year. Members without know relatives within Rhodobacteraceae and the NS4 marine group were more pronounced in the period from April to May, the AEGEAN-169 marine group, SAR11 subclade III, and HIMB11 in the period from June to October, and SAR11 subclade Ia and Archaea in the period from November to March. Litoricola and OM60 (NOR5) clade were characteristic for both the community sampled from April to May and November to March. Taken together, prokaryotic communities inhabiting nearshore surface waters exhibit a general pattern in community structure similar to other surface associated assemblages of temperate areas. However, the identified specific community composition and temporal patterns differ from other coastal areas.


Assuntos
Gammaproteobacteria , Água do Mar , Archaea/genética , Gammaproteobacteria/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
2.
Front Microbiol ; 12: 671342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603223

RESUMO

Surfaces of marine macrophytes are inhabited by diverse microbial communities. Most studies focusing on epiphytic communities of macrophytes did not take into account temporal changes or applied low sampling frequency approaches. The seasonal dynamics of epiphytic microbial communities was determined in a meadow of Cymodocea nodosa invaded by Caulerpa cylindracea and in a monospecific settlement of C. cylindracea at monthly intervals. For comparison the ambient prokaryotic picoplankton community was also characterized. At the OTU level, the microbial community composition differed between the ambient water and the epiphytic communities exhibiting host-specificity. Also, successional changes were observed connected to the macrophyte growth cycle. Taxonomic analysis, however, showed similar high rank taxa (phyla and classes) in the ambient water and the epiphytic communities, with the exception of Desulfobacterota, which were only found on C. cylindracea. Cyanobacteria showed seasonal changes while other high rank taxa were present throughout the year. In months of high Cyanobacteria presence the majority of cyanobacterial sequences were classified as Pleurocapsa. Phylogenetic groups present throughout the year (e.g., Saprospiraceae, Rhodobacteraceae, members without known relatives within Gammaproteobacteria, Desulfatitalea, and members without known relatives within Desulfocapsaceae) constituted most of the sequences, while less abundant taxa showed seasonal patterns connected to the macrophyte growth cycle. Taken together, epiphytic microbial communities of the seagrass C. nodosa and the macroalga C. cylindracea appear to be host-specific and contain taxa that undergo successional changes.

3.
Front Microbiol ; 12: 665999, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108951

RESUMO

Studies of unculturable microbes often combine methods, such as 16S rRNA sequencing, metagenomics, and metaproteomics. To apply these techniques to the microbial community inhabiting the surfaces of marine macrophytes, it is advisable to perform a selective DNA and protein isolation prior to the analysis to avoid biases due to the host material being present in high quantities. Two protocols for DNA and protein isolation were adapted for selective extractions of DNA and proteins from epiphytic communities inhabiting the surfaces of two marine macrophytes, the seagrass Cymodocea nodosa and the macroalga Caulerpa cylindracea. Protocols showed an almost complete removal of the epiphytic community regardless of the sampling season, station, settlement, or host species. The obtained DNA was suitable for metagenomic and 16S rRNA sequencing, while isolated proteins could be identified by mass spectrometry. Low presence of host DNA and proteins in the samples indicated a high specificity of the protocols. The procedures are based on universally available laboratory chemicals making the protocols widely applicable. Taken together, the adapted protocols ensure an almost complete removal of the macrophyte epiphytic community. The procedures are selective for microbes inhabiting macrophyte surfaces and provide DNA and proteins applicable in 16S rRNA sequencing, metagenomics, and metaproteomics.

4.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30299466

RESUMO

Seasonal changes of microbial abundance and associated extracellular enzymatic activity in marine snow and in seawater were studied in the northern Adriatic during a three-year period. Marine snow was present during the entire period of investigation, although in higher concentrations during summer than during winter. Microorganisms densely colonized marine snow and aggregate-associated enzymatic activity was substantially higher (up to 105 times) than in seawater. Alkaline phosphatase activity (APA) and aminopeptidase activity in marine snow showed seasonal variations with higher values in late spring-summer than in autumn-winter, probably in response to changes in the quantity and quality of organic matter. The highest cell-specific bacterial activity was found for phosphatase, followed by peptidase, and the lowest was for glucosidases. Differential hydrolysis of marine snow-derived organic matter points to the well-known phosphorus limitation of the northern Adriatic and indicates preferential utilization of phosphorus- and nitrogen-rich organic compounds by microbes, while hydrolysis of polysaccharides seemed to be less important. In oligotrophic conditions during summer, organic matter released from marine snow might represent a significant source of substrate for free-living bacteria in seawater. For the first time microorganisms producing APA in marine snow were identified, revealing that dense populations of bacteria expressed APA, while cyanobacteria did not. Cyanobacteria proliferating in marine snow could benefit from phosphorus release by bacteria and nanoflagellates.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Neve/microbiologia , Fosfatase Alcalina/metabolismo , Aminopeptidases/metabolismo , Bactérias/classificação , Glucosidases/metabolismo , Microbiota , Fósforo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA