Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232138

RESUMO

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Assuntos
Demência Frontotemporal , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética
2.
J Neuroinflammation ; 19(1): 30, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109872

RESUMO

BACKGROUND: Astrocytes and microglia react to Aß plaques, neurofibrillary tangles, and neurodegeneration in the Alzheimer's disease (AD) brain. Single-nuclei and single-cell RNA-seq have revealed multiple states or subpopulations of these glial cells but lack spatial information. We have developed a methodology of cyclic multiplex fluorescent immunohistochemistry on human postmortem brains and image analysis that enables a comprehensive morphological quantitative characterization of astrocytes and microglia in the context of their spatial relationships with plaques and tangles. METHODS: Single FFPE sections from the temporal association cortex of control and AD subjects were subjected to 8 cycles of multiplex fluorescent immunohistochemistry, including 7 astroglial, 6 microglial, 1 neuronal, Aß, and phospho-tau markers. Our analysis pipeline consisted of: (1) image alignment across cycles; (2) background subtraction; (3) manual annotation of 5172 ALDH1L1+ astrocytic and 6226 IBA1+ microglial profiles; (4) local thresholding and segmentation of profiles; (5) machine learning on marker intensity data; and (6) deep learning on image features. RESULTS: Spectral clustering identified three phenotypes of astrocytes and microglia, which we termed "homeostatic," "intermediate," and "reactive." Reactive and, to a lesser extent, intermediate astrocytes and microglia were closely associated with AD pathology (≤ 50 µm). Compared to homeostatic, reactive astrocytes contained substantially higher GFAP and YKL-40, modestly elevated vimentin and TSPO as well as EAAT1, and reduced GS. Intermediate astrocytes had markedly increased EAAT2, moderately increased GS, and intermediate GFAP and YKL-40 levels. Relative to homeostatic, reactive microglia showed increased expression of all markers (CD68, ferritin, MHC2, TMEM119, TSPO), whereas intermediate microglia exhibited increased ferritin and TMEM119 as well as intermediate CD68 levels. Machine learning models applied on either high-plex signal intensity data (gradient boosting machines) or directly on image features (convolutional neural networks) accurately discriminated control vs. AD diagnoses at the single-cell level. CONCLUSIONS: Cyclic multiplex fluorescent immunohistochemistry combined with machine learning models holds promise to advance our understanding of the complexity and heterogeneity of glial responses as well as inform transcriptomics studies. Three distinct phenotypes emerged with our combination of markers, thus expanding the classic binary "homeostatic vs. reactive" classification to a third state, which could represent "transitional" or "resilient" glia.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Humanos , Imuno-Histoquímica , Aprendizado de Máquina , Microglia/metabolismo , Receptores de GABA/metabolismo
3.
Alzheimers Res Ther ; 13(1): 199, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906229

RESUMO

BACKGROUND: Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS: We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS: At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS: Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION: Not applicable.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Humanos , Filamentos Intermediários , Neuroimagem , Proteínas tau
4.
Cell Rep ; 35(10): 109189, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107263

RESUMO

Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.


Assuntos
Comunicação Celular/fisiologia , Estudo de Associação Genômica Ampla/métodos , Mapas de Interação de Proteínas/fisiologia , alfa-Sinucleína/metabolismo , Humanos
5.
Brain Pathol ; 30(1): 151-164, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276244

RESUMO

The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post-mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post-mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA-Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aß plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia-specific PET radioligands.


Assuntos
Doença de Alzheimer/genética , Receptores de GABA/genética , Receptores de GABA/metabolismo , Doença de Alzheimer/patologia , Astrócitos/patologia , Autopsia/métodos , Encéfalo/patologia , Células Endoteliais/patologia , Expressão Gênica/genética , Humanos , Estudos Longitudinais , Microglia/patologia , Emaranhados Neurofibrilares/metabolismo , Neuroglia/patologia , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Transcriptoma/genética
6.
Trends Mol Med ; 24(12): 1007-1020, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442495

RESUMO

Over the past decade, the importance of the propagation of amyloidogenic proteins such as α-synuclein and tau in the pathogenesis of neurodegenerative diseases has been supported by numerous neuropathological and experimental studies. While these proteins behave similarly to prions, recent evidence suggests the existence of fundamental differences, as they can propagate in the absence of endogenous template, they do not exhibit a strict 'strain' behavior, and they may not be transmissible between individuals. We therefore propose to name these proteins 'prionoids'. In this review we critically assess the extent of the overlap between these two entities and evaluate how the propagation of prionoids can fit into the wider system dysfunction seen in the brains of patients with Alzheimer's and Parkinson's diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Doença de Parkinson/metabolismo , Príons/metabolismo
7.
J Biol Chem ; 293(34): 13247-13256, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29950521

RESUMO

Apolipoprotein E (ApoE) is a secreted apolipoprotein with three isoforms, E2, E3, and E4, that binds to lipids and facilitates their transport in the extracellular environment of the brain and the periphery. The E4 allele is a major genetic risk factor for the sporadic form of Alzheimer's disease (AD), and studies of human brain and mouse models have revealed that E4 significantly exacerbates the deposition of amyloid beta (Aß). It has been suggested that this deposition could be attributed to the formation of soluble ApoE isoform-specific ApoE-Aß complexes. However, previous studies have reported conflicting results regarding the directionality and strength of those interactions. In this study, using a series of flow cytometry assays that maintain the physiological integrity of ApoE-Aß complexes, we systematically assessed the association of Aß with ApoE2, E3, or E4. We used ApoE secreted from HEK cells or astrocytes overexpressing ApoE fused with a GFP tag. As a source of soluble Aß peptide, we used synthetic Aß40 or Aß42 or physiological Aß secreted from CHO cell lines overexpressing WT or V717F variant amyloid precursor protein (APP). We observed significant interactions between the different ApoE isoforms and Aß, with E4 interacting with Aß more strongly than the E2 and E3 isoforms. We also found subtle differences depending on the Aß type and the ApoE-producing cell type. In conclusion, these results indicate that the strength of the ApoE-Aß association depends on the source of Aß or ApoE.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Citometria de Fluxo/métodos , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/citologia , Bioensaio , Linhagem da Célula , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Isoformas de Proteínas
8.
J Biol Chem ; 292(36): 14720-14729, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28684412

RESUMO

Apolipoprotein E (apoE) has an important role in the pathogenesis of Alzheimer's disease with its three isoforms having distinct effects on disease risk. Here, we assessed the conformational differences between those isoforms using a novel flow cytometry-Forster resonance energy transfer (FRET) assay. We showed that the conformation of intracellular apoE within HEK cells and astrocytes adopts a directional pattern; in other words, E4 adopts the most closed conformation, E2 adopts the most open conformation, and E3 adopts an intermediate conformation. However, this pattern was not maintained upon secretion of apoE from astrocytes. Intermolecular interactions between apoE molecules were isoform-specific, indicating a great diversity in the structure of apoE lipoparticles. Finally, we showed that secreted E4 is the most lipidated isoform in astrocytes, suggesting that increased lipidation acts as a folding chaperone enabling E4 to adopt a closed conformation. In conclusion, this study gives insights into apoE biology and establishes a robust screening system to monitor apoE conformation.


Assuntos
Apolipoproteínas E/química , Astrócitos/química , Transferência Ressonante de Energia de Fluorescência , Apolipoproteínas E/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA