Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(8): e1011254, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561790

RESUMO

Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Redes Reguladoras de Genes/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Algoritmos , Biologia Computacional/métodos
2.
iScience ; 26(6): 106897, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37332613

RESUMO

Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism against pathogens. In tumors, recent studies have uncovered complex macrophage populations, including tumor-associated macrophages, which support tumorigenesis through cancer hallmarks such as immunosuppression, angiogenesis, or matrix remodeling. In the case of chronic lymphocytic leukemia, these macrophages are known as nurse-like cells (NLCs) and they protect leukemic cells from spontaneous apoptosis, contributing to their chemoresistance. We propose an agent-based model of monocyte differentiation into NLCs upon contact with leukemic B cells in vitro. We performed patient-specific model optimization using cultures of peripheral blood mononuclear cells from patients. Using our model, we were able to reproduce the temporal survival dynamics of cancer cells in a patient-specific manner and to identify patient groups related to distinct macrophage phenotypes. Our results show a potentially important role of phagocytosis in the polarization process of NLCs and in promoting cancer cells' enhanced survival.

3.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297362

RESUMO

The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA