Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Rhythms ; 36(4): 369-383, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182829

RESUMO

Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 R2 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly (p < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 R2; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 R2; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.


Assuntos
Melatonina , Transtornos do Sono do Ritmo Circadiano , Biomarcadores , Ritmo Circadiano , Feminino , Humanos , Luz , Masculino , Metaboloma , Sono
2.
Biochim Biophys Acta ; 1843(2): 234-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24200678

RESUMO

Filamin A (FlnA) is a ubiquitous actin binding protein which anchors various transmembrane proteins to the cell cytoskeleton and provides a scaffold to many cytoplasmic signaling proteins involved in actin cytoskeleton remodeling in response to mechanical stress and cytokines stimulation. Although the vast majority of FlnA binding partners interact with the carboxy-terminal immunoglobulin like (Igl) repeats of FlnA, little is known on the role of the amino-N-terminal repeats. Here, using cardiac mitral valvular dystrophy associated FlnA-G288R and P637Q mutations located in the N-terminal Igl repeat 1 and 4 respectively as a model, we identified a new role of FlnA N-terminal repeats in small Rho-GTPases regulation. Using FlnA-deficient melanoma and HT1080 cell lines as expression systems we showed that FlnA mutations reduce cell spreading and migration capacities. Furthermore, we defined a signaling network in which FlnA mutations alter the balance between RhoA and Rac1 GTPases activities in favor of RhoA and provided evidences for a role of the Rac1 specific GTPase activating protein FilGAP in this process. Together our work ascribed a new role to the N-terminal repeats of FlnA in Small GTPases regulation and supports a conceptual framework for the role of FlnA mutations in cardiac valve diseases centered around signaling molecules regulating cellular actin cytoskeleton in response to mechanical stress.


Assuntos
Filaminas/química , Filaminas/genética , Doenças das Valvas Cardíacas/genética , Mutação/genética , Sequências Repetitivas de Aminoácidos , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Tamanho Celular , Filaminas/deficiência , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Mesoderma/patologia , Proteínas Mutantes/metabolismo , Relação Estrutura-Atividade
3.
Biofabrication ; 3(2): 025002, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21562365

RESUMO

Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.


Assuntos
Técnicas de Cultura de Células/métodos , Esferoides Celulares/citologia , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Automação , Técnicas de Cultura de Células/instrumentação , Tamanho Celular , Humanos , Engenharia Tecidual/instrumentação
4.
Dev Dyn ; 239(7): 2118-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20549728

RESUMO

Myxoid degeneration of the cardiac valves is a common feature in a heterogeneous group of disorders that includes Marfan syndrome and isolated valvular diseases. Mitral valve prolapse is the most common outcome of these and remains one of the most common indications for valvular surgery. While the etiology of the disease is unknown, recent genetic studies have demonstrated that an X-linked form of familial cardiac valvular dystrophy can be attributed to mutations in the Filamin-A gene. Since these inheritable mutations are present from conception, we hypothesize that filamin-A mutations present at the time of valve morphogenesis lead to dysfunction that progresses postnatally to clinically relevant disease. Therefore, by carefully evaluating genetic factors (such as filamin-A) that play a substantial role in MVP, we can elucidate relevant developmental pathways that contribute to its pathogenesis. In order to understand how developmental expression of a mutant protein can lead to valve disease, the spatio-temporal distribution of filamin-A during cardiac morphogenesis must first be characterized. Although previously thought of as a ubiquitously expressed gene, we demonstrate that filamin-A is robustly expressed in non-myocyte cells throughout cardiac morphogenesis including epicardial and endocardial cells, and mesenchymal cells derived by EMT from these two epithelia, as well as mesenchyme of neural crest origin. In postnatal hearts, expression of filamin-A is significantly decreased in the atrioventricular and outflow tract valve leaflets and their suspensory apparatus. Characterization of the temporal and spatial expression pattern of filamin-A during cardiac morphogenesis is a crucial first step in our understanding of how mutations in filamin-A result in clinically relevant valve disease.


Assuntos
Proteínas Contráteis/metabolismo , Coração/embriologia , Proteínas dos Microfilamentos/metabolismo , Animais , Endocárdio/embriologia , Endocárdio/metabolismo , Filaminas , Humanos , Imuno-Histoquímica , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos
5.
Dev Dyn ; 235(1): 191-202, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16252277

RESUMO

It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory "butterfly"-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a bi-conal heart. A theoretical role of the ventral fusion line acting as a "heart organizer" and its role in cardia bifida is discussed.


Assuntos
Embrião de Galinha , Coração/embriologia , Animais , Imunofluorescência , Microscopia Confocal , Microscopia Eletrônica de Varredura , Coloração e Rotulagem
6.
Expert Opin Biol Ther ; 4(6): 773-81, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15174961

RESUMO

Regenerative medicine is an emerging, but still poorly defined, field of biomedicine. The ongoing 'regenerative medicine revolution' is based on a series of new exciting breakthrough discoveries in the field of stem cell biology and developmental biology. The main problem of regenerative medicine is not so much stem cell differentiation, isolation and lineage diversity, although these are very important issues, but rather stem cell mobilisation, recruitment and integration into functional tissues. The key issue in enhancing tissue and organ regeneration is how to mobilise circulating stem and progenitor cells and how to provide an appropriate environment ('niche') for their tissue and organo-specific recruitment, 'homing' and complete functional integration. We need to know more about basic tissue biology, tissue regeneration and the cellular and molecular mechanisms of tissue turnover (both cellular and extracellular components) at different periods of human life and in different diseases. Systematic in silico, in vitro and in vivo research is a foundation for further progress in regenerative medicine. Regenerative medicine is a rapidly advancing field that opens new and exciting opportunities for completely revolutionary therapeutic modalities and technologies. Regenerative medicine is, at its essence, an emergence of applied stem cell and developmental biology.


Assuntos
Biologia do Desenvolvimento/métodos , Regeneração , Células-Tronco/citologia , Animais , Linhagem da Célula , Transplante de Células , Terapia Genética/métodos , Humanos , Neoplasias/terapia , Engenharia Tecidual
8.
Mech Dev ; 103(1-2): 183-8, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11335131

RESUMO

Periostin was originally isolated as a osteoblast-specific factor that functions as a cell adhesion molecule for preosteoblasts and is thought to be involved in osteoblast recruitment, attachment and spreading. Additionally, periostin expression has previously been shown to be significantly increased by both transforming growth factor beta-1(TGFbeta1) and bone morphogenetic protein (BMP)-2. Likewise the endocardial cushions that form within embryonic heart tube (embryonic day (E)10-13) are formed by the recruitment, attachment and spreading of endocardial cells into the overlying extracellular matrix, in response to secreted growth factors of the TGFbeta and BMP families. In order to determine whether periostin is similarly involved in heart morphogenesis, in situ hybridization and reverse transcription-polymerase chain reaction were used to detect periostin mRNA expression in the developing mouse heart. We show for the first time that periostin mRNA is expressed in the developing mouse embryonic and fetal heart, and that it is localized to the endocardial cushions that ultimately divide the primitive heart tube into a four-chambered heart.


Assuntos
Moléculas de Adesão Celular/biossíntese , Valvas Cardíacas/embriologia , Coração/embriologia , Miocárdio/metabolismo , Animais , DNA Complementar/metabolismo , Hibridização In Situ , Camundongos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
10.
Dev Biol ; 238(1): 97-109, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11783996

RESUMO

As classically described, the precardiac mesoderm of the paired heart-forming fields migrate and fuse anteriomedially in the ventral midline to form the first segment of the straight heart tube. This segment ultimately forms the right trabeculated ventricle. Additional segments are added to the caudal end of the first in a sequential fashion from the posteriolateral heart-forming field mesoderm. In this study we report that the final major heart segment, which forms the cardiac outflow tract, does not follow this pattern of embryonic development. The cardiac outlet, consisting of the conus and truncus, does not derive from the paired heart-forming fields, but originates separately from a previously unrecognized source of mesoderm located anterior to the initial primitive heart tube segment. Fate-mapping results show that cells labeled in the mesoderm surrounding the aortic sac and anterior to the primitive right ventricle are incorporated into both the conus and the truncus. Conversely, if cells are labeled in the existing right ventricle no incorporation into the cardiac outlet is observed. Tissue explants microdissected from this anterior mesoderm region are capable of forming beating cardiac muscle in vitro when cocultured with explants of the primitive right ventricle. These findings establish the presence of another heart-forming field. This anterior heart-forming field (AHF) consists of mesoderm surrounding the aortic sac immediately anterior to the existing heart tube. This new concept of the heart outlet's embryonic origin provides a new basis for explaining a variety of gene-expression patterns and cardiac defects described in both transgenic animals and human congenital heart disease.


Assuntos
Coração/embriologia , Miocárdio/metabolismo , Células 3T3 , Adenoviridae/genética , Animais , Aorta/embriologia , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Técnicas de Cocultura , Endoderma/metabolismo , Genes Reporter , Ventrículos do Coração/embriologia , Óperon Lac , Luciferases/metabolismo , Mesoderma/metabolismo , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Fenótipo , Transfecção
11.
Dev Biol ; 240(1): 61-76, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11784047

RESUMO

Well after formation of the primary linear heart tube, the mesenchymal cardiac septa become largely myocardial, and myocardial sleeves are formed along the caval and pulmonary veins. This second wave of myocardium formation can be envisioned to be the result of recruitment of cardiomyocytes by differentiation from flanking mesenchyme and/or by migration from existing myocardium (myocardialization). As a first step to elucidate the underlying mechanism, we studied in chicken heart development the formation of myocardial cells within intra- and extracardiac mesenchymal structures. We show that the second wave of myocardium formation proceeds in a caudal-to-cranial gradient in vivo. At the venous pole, loosely arranged networks of cardiomyocytes are observed in the dorsal mesocardium from H/H19 onward, in the atrioventricular cushion region from H/H26 onward, and in the proximal outflow tract (conus) from H/H29 onward. The process is completed at H/H stage 43. Subsequently, we determined the potential of the different cardiac compartments to form myocardial networks in a 3D in vitro culture assay. This analysis showed that the competency to form myocardial networks in vitro is a characteristic of the myocardium that is flanked by intra- or extracardiac mesenchyme, i.e., the inflow tract, atrioventricular canal, and outflow tract. These cardiac compartments can be induced to form myocardial networks by a temporally released or secreted signal that is similar throughout the entire heart. Atrial and ventricular compartments are not competent and do not produce the inducer. Moreover, cardiac cushion mesenchyme was found to be able to (trans-)differentiate into cardiomyocytes in the in vitro culture assay. The combined observations suggest that a common mechanism and molecular regulatory pathway underlies the recruitment of mesodermal cells into the cardiogenic lineage during this second wave of myocardium formation through the entire heart.


Assuntos
Coração/embriologia , Animais , Embrião de Galinha , Desenvolvimento Embrionário , Imuno-Histoquímica , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Miocárdio/ultraestrutura
12.
Cardiol Young ; 11(6): 588-600, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11813909

RESUMO

Living morphogenetic studies show that each definitive ventricle is constructed from different primitive cardiac segments, and each has its specific anatomical features. These ventricular segments are the atrioventricular junction; the primitive inlet segment, part of the primary heart tube, which initially provides the inlets of each ventricle; the primitive outlet segment, which gives rise to both ventricular outlets; and the apical trabeculated regions of the right and left ventricles which grow from the primary heart tube, respectively. In this review, we describe regional pathology based on the relationship of these primitive ventricular components. We propose that the abnormal morphogenesis of one of these segments gives origin to regional ventricular pathology. For example, abnormal embryogenesis of the atrioventricular canal produces malformations of the atrioventricular junctions, such as double inlet ventricle, absence of one atrioventricular connection, and straddling and overriding atrioventricular valves. Similarly, abnormal morphogenesis of the primitive outlet segment gives rise to malformations of the subarterial region of each ventricle, along with the valves guarding these vessels. The principal anatomical features of these malformations of the ventricular inlets and outlets are described, and their possible morphogenesis is discussed. Due to the fact that the apical trabeculated region of each ventricle arises from a separate primitive segment, each ventricle can be identified according to the pattern of its apical trabeculations. This feature is crucial in the elucidation of complex congenital pathology, such as discordant atrioventricular connections.


Assuntos
Comunicação Interventricular/embriologia , Comunicação Interventricular/patologia , Ventrículos do Coração/anormalidades , Ventrículos do Coração/embriologia , Animais , Humanos , Morfogênese/fisiologia
13.
Anat Rec ; 260(3): 279-93, 2000 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-11066038

RESUMO

The trisomy 16 (Ts16) mouse is generally considered a model for human Down's syndrome (trisomy 21). However, many of the cardiac defects in the Ts16 mouse do not reflect the heart malformations seen in patients suffering from this chromosomal disorder. In this study we describe the conotruncal malformations in mice with trisomy 16. The development of the outflow tract was immunohistochemically studied in serially sectioned hearts from 34 normal and 26 Ts16 mouse embryos ranging from 8.5 to 14.5 embryonic days. Conotruncal malformations observed in the Ts 16 embryos included double outlet right ventricle, persistent truncus arteriosus, Tetralogy of Fallot, and right-sided aortic arch. This spectrum of malformations is remarkably similar to that seen in humans suffering from DiGeorge syndrome (DGS). As perturbation of neural crest development has been proposed in the pathogenesis of DGS we specifically focussed on the fate of neural crest derived cells during outflow tract development of the Ts16 mouse using an antibody that enabled us to trace these cells during development. Severe perturbation of the neural crest-derived cell population was observed in each trisomic specimen. The abnormalities pertained to: 1) the size of the columns of neural crest-derived cells (or prongs); 2) the spatial orientation of these prongs within the mesenchymal tissues of the outflow tract; and 3) the location in which the neural crest cells interact with the myocardium. The latter abnormality appeared to be responsible for ectopic myocardialization found in trisomic embryos. Our observations strongly suggest that abnormal neural crest cell behavior is involved in the pathogenesis of the conotruncal malformations in the Ts16 mouse.


Assuntos
Cardiopatias Congênitas/embriologia , Crista Neural/anormalidades , Trissomia , Animais , Conexina 43/análise , Síndrome de DiGeorge/embriologia , Síndrome de DiGeorge/etiologia , Síndrome de DiGeorge/patologia , Modelos Animais de Doenças , Síndrome de Down/etiologia , Síndrome de Down/patologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/patologia , Ventrículos do Coração/anormalidades , Cariotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Crista Neural/química , Crista Neural/patologia , Gravidez , Saco Vitelino/citologia
14.
Anat Rec ; 259(3): 288-300, 2000 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-10861362

RESUMO

The development of the atrial chambers in the human heart was investigated immunohistochemically using a set of previously described antibodies. This set included the monoclonal antibody 249-9G9, which enabled us to discriminate the endocardial cushion-derived mesenchymal tissues from those derived from extracardiac splanchnic mesoderm, and a monoclonal antibody recognizing the B isoform of creatine kinase, which allowed us to distinguish the right atrial myocardium from the left. The expression patterns obtained with these antibodies, combined with additional histological information derived from the serial sections, permitted us to describe in detail the morphogenetic events involved in the development of the primary atrial septum (septum primum) and the pulmonary vein in human embryos from Carnegie stage 14 onward. The level of expression of creatine kinase B (CK-B) was found to be consistently higher in the left atrial myocardium than in the right, with a sharp boundary between high and low expression located between the primary septum and the left venous valve indicating that the primary septum is part of the left atrial gene-expression domain. This expression pattern of CK-B is reminiscent of that of the homeobox gene Pitx2, which has recently been shown to be important for atrial septation in the mouse. This study also demonstrates a poorly appreciated role of the dorsal mesocardium in cardiac development. From the earliest stage investigated onward, the mesenchyme of the dorsal mesocardium protrudes into the dorsal wall of the primary atrial segment. This dorsal mesenchymal protrusion is continuous with a mesenchymal cap on the leading edge of the primary atrial septum. Neither the mesenchymal tissues of the dorsal protrusion nor the mesenchymal cap on the edge of the primary septum expressed the endocardial tissue antigen recognized by 249-9G9 at any of the stages investigated. The developing pulmonary vein uses the dorsal mesocardium as a conduit to reach the primary atrial segment. Initially, the pulmonary pit, which will becomes the portal of entry for the pulmonary vein, is located along the midline, flanked by two myocardial ridges. As development progresses, tissue remodeling results in the incorporation of the portal of entry of the pulmonary vein in left atrial myocardium, which is recognized because of its high level of creatine. Closure of the primary atrial foramen by the primary atrial septum occurs as a consequence of the fusion of these mesenchymal structures.


Assuntos
Embrião de Mamíferos/embriologia , Átrios do Coração/embriologia , Mesoderma/citologia , Anticorpos Monoclonais , Creatina Quinase/metabolismo , Embrião de Mamíferos/enzimologia , Átrios do Coração/enzimologia , Humanos , Técnicas Imunoenzimáticas , Isoenzimas , Mesoderma/enzimologia , Miocárdio/enzimologia , Veias Pulmonares/embriologia
15.
Am J Med Genet ; 97(4): 289-96, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11376440

RESUMO

Formation of the atrioventricular canal (AVC) results from complex interactions of components of the extracellular matrix. In response to signaling molecules, endothelial/mesenchymal transformations are crucial to normal development of the AVC. Atrioventricular septal defects (AVSDs) can result from arrest or interruption of normal endocardial cushion development. The presence of AVSDs has been associated with chromosome abnormalities, laterality or left-right axis abnormalities, and a variety of syndromes. An AVSD susceptibility gene has been identified in a large kindred with many affected members. Studies of transcription factors and signaling molecules in heart development over the past decade are paving the way for our understanding of the heterogeneous mechanisms of causation of AVSDs.


Assuntos
Comunicação Atrioventricular/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Padronização Corporal/genética , Aberrações Cromossômicas/embriologia , Aberrações Cromossômicas/patologia , Transtornos Cromossômicos , Mapeamento Cromossômico , Cromossomos Humanos/genética , Cromossomos Humanos/ultraestrutura , Modelos Animais de Doenças , Síndrome de Down/patologia , Comunicação Atrioventricular/embriologia , Comunicação Atrioventricular/epidemiologia , Coração Fetal/patologia , Heterogeneidade Genética , Humanos , Mesoderma , Camundongos , Morfogênese/genética , Baço/anormalidades , Síndrome , Trissomia
16.
Dev Biol ; 212(2): 477-90, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10433836

RESUMO

During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally, (vi) ventricular myocardium did not produce factors capable of supporting myocardialization.


Assuntos
Vasos Sanguíneos/embriologia , Indução Embrionária , Coração/embriologia , Animais , Embrião de Galinha , Meios de Cultivo Condicionados , Técnicas de Cultura , Átrios do Coração/embriologia , Septos Cardíacos/embriologia , Ventrículos do Coração/embriologia , Mesoderma , Modelos Estruturais , Miocárdio/citologia , Técnicas de Cultura de Órgãos
17.
Dev Biol ; 202(1): 56-66, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9758703

RESUMO

The heart defect (hdf) mouse is a recessive lethal that arose from a transgene insertional mutation on chromosome 13. Embryos homozygous for the transgene die in utero by embryonic day 10.5 postcoitus and exhibit specific defects along the anterior-posterior cardiac axis. The future right ventricle and conus/truncus of the single heart tube fail to form and the endocardial cushions in the atrioventricular and conus/truncus regions are absent. Because the hdf mouse mutation provided the opportunity to identify a gene required for endocardial cushion formation and for specification or maintenance of the anterior most segments of the heart, we initiated studies to further characterize the phenotype, clone the insertion site, and identify the gene disrupted. Chromosome mapping studies first identified the gene, Cspg2 (versican), as a candidate hdf gene. In addition, an antibody recognizing a glycosaminoglycan epitope on versican was found to be positive by immunohistochemistry in the extracellular matrix of normal wild-type embryonic hearts, but absent in homozygous hearts. Expression analysis of the Cspg2 gene showed that the 6/8, 6/9, and 7/9 Cspg2 exon boundaries were present in mRNA of normal wild-type embryonic hearts but absent in the homozygous mutant embryos. DNA sequence flanking the transgene was used to isolate from a normal mouse library overlapping genomic DNA segments that span the transgene insertion site. The contiguous genomic DNA segment was found to contain exon 7 of the Cspg2 in a position 3' to the transgene insertion site. These four separate lines of evidence support the hypothesis that Cspg2 is the gene disrupted by the transgene insertion in the hdf mouse line. The findings of this study and our previous studies of the hdf insertional mutant mouse have shown that normal expression of the Cspg2 gene is required for the successful development of the endocardial cushion swellings and the embryonic heart segments that give rise to the right ventricle and conus/truncus in the outlet of the looped heart.


Assuntos
Miosinas Cardíacas , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Endocárdio/embriologia , Coração/embriologia , Processamento Alternativo , Animais , Mapeamento Cromossômico , Clonagem Molecular , Endocárdio/química , Genes/fisiologia , Lectinas Tipo C , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Morfogênese , Mutagênese Insercional , Miocárdio/química , Cadeias Leves de Miosina/análise , RNA Mensageiro/análise , Mapeamento por Restrição , Análise de Sequência de DNA , Versicanas
18.
Acta Anat (Basel) ; 162(1): 1-15, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9789103

RESUMO

Endocardial cushion tissue is formed by an epithelial-mesenchymal transformation of endocardial cells, a process which results from an inductive interaction between the myocardium and endocardium within the atrioventricular (AV) and outflow tract (OT) regions of the heart. We report here that a protein previously found to be required for myocardially induced transformation of endocardial cells in vitro, ES/130, is highly expressed within the AV and OT regions not only by myocardial cells, but also by the endocardium and its mesenchymal progeny. Given these findings and others, we have tested the hypothesis that endocardial cushion tissue secretes factors which autoregulate its transformation to mesenchyme. Endocardial cushion tissue was cultured and its conditioned growth medium was harvested and applied to nontransformed endocardial cells maintained in the absence of the inductive myocardium. This treatment resulted in endocardial cell invasion into three-dimensional collagen gels plus increased expression of proteins associated with endocardial cell transformation in vivo. Whereas endocardial cushion tissue was found to express ES/130 protein in vivo and in vitro, minimal detection of ES/130 in its conditioned growth medium was observed in immunoblots. Attempts to inhibit the mesenchyme-promoting activity of the conditioned medium with ES/130 antisense were unsuccessful. However, strong intracellular ES/130 expression was detected in endocardial cells, and this expression correlated with the ability of endocardial cells to transform. For example, the minority of endocardial cultures that failed to transform in response to conditioned medium treatment also failed to undergo increased expression of ES/130. These observations are interpreted to suggest that (i) endocardial cushion tissue secretes factors that promote its transformation to mesenchyme, and (ii) while endocardial cushion tissue appears to signal through secretion of factors other than or in addition to ES/130, intracellular ES/130 expression nevertheless may be a target endocardial cell response required for endocardial cell transformation.


Assuntos
Proteínas Aviárias , Embrião de Galinha/embriologia , Indução Embrionária , Endocárdio/embriologia , Proteínas da Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Endocárdio/efeitos dos fármacos , Endocárdio/metabolismo , Proteínas da Matriz Extracelular/genética , Septos Cardíacos/embriologia , Mesoderma/citologia , Mesoderma/metabolismo , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo
19.
Dev Biol ; 194(1): 99-113, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9473335

RESUMO

Transformation of atrioventricular canal endocardium into invasive mesenchyme is a critical antecedent of cardiac septation and valvulogenesis. Previous studies by Potts et al. (Proc. Natl. Acad. Sci. USA 88, 1510-1520, 1991) showed that treatment of atrioventricular canal endocardial and myocardial cocultures with TGFbeta3 antisense oligodeoxynucleotides blocked mesenchyme formation. Based on this observation, we sought to: (i) identify the target tissue of TGFbeta3 antisense oligos in this transformation bioassay, and (ii) more clearly define the mechanism of TGFbeta3 function in atrioventricular canal mesenchyme formation. In situ hybridization and immunohistochemistry showed little or no TGFbeta3 mRNA or protein in the atrioventricular canal myocardium or endocardium prior to mesenchyme formation (stage 14; paraformaldehyde fixation). However, by stage 18 transforming atrioventricular canal endocardial cells and mesenchyme as well as myocardium were positive for both TGFbeta3 mRNA and protein. In culture bioassays, atrioventricular canal endocardial monolayers pretreated with antisense phosphorothioate oligodeoxynucleotides to TGFbeta3 did not transform into invasive mesenchyme in response to cardiocyte conditioned medium: the subsequent addition of exogenous TGFbeta3 protein relieved this inhibition. Control cultures without pretreatment or those receiving missense oligos generated similar numbers of invasive mesenchyme in response to cardiocyte conditioned medium. Direct addition of TGFbeta3 protein to atrioventricular canal endocardial monolayers in the absence of cardiocyte conditioned medium resulted in loss of cell:cell associations and stimulated cellular hypertrophy, but did not engender invasive mesenchyme formation or alter endocardial proliferation after 24 h of culture. Similar results were obtained with TGFbeta2 protein, either alone or in combination with TGFbeta3. The results of this study indicate that: (i) atrioventricular canal endocardium expresses TGFbeta3 in response to a myocardially derived signal other than TGFbeta3, (ii) atrioventricular canal endocardial TGFbeta3 functions in an autocrine fashion to elicit selected characteristics necessary for cushion tissue formation, and (iii) TGFbeta3 alone or in combination with TGFbeta2 is insufficient to transform atrioventricular canal endocardium into invasive mesenchyme in culture.


Assuntos
Coração/embriologia , Mesoderma/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Meios de Cultivo Condicionados , Biossíntese de Proteínas , Fator de Crescimento Transformador beta/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA