Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 492(7429): 423-7, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23257886

RESUMO

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Assuntos
Evolução Biológica , Fibra de Algodão , Genoma de Planta/genética , Gossypium/genética , Poliploidia , Alelos , Cacau/genética , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica/genética , Genes de Plantas/genética , Gossypium/classificação , Anotação de Sequência Molecular , Filogenia , Vitis/genética
2.
Nucleic Acids Res ; 40(7): e49, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22217600

RESUMO

MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.


Assuntos
Evolução Molecular , Ordem dos Genes , Genômica , Software , Sintenia , Algoritmos , Duplicação Gênica , Genoma de Planta , Magnoliopsida/genética , Família Multigênica
3.
BMC Genomics ; 12: 470, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21955929

RESUMO

BACKGROUND: Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. RESULTS: A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. CONCLUSIONS: A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123.


Assuntos
Brassica/genética , Mapeamento de Sequências Contíguas , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , DNA de Plantas/genética , Eucromatina/genética , Biblioteca Genômica , Heterocromatina/genética , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 102(37): 13206-11, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16141333

RESUMO

Nearly finished sequences for model organisms provide a foundation from which to explore genomic diversity among other taxonomic groups. We explore genome-wide microsynteny patterns between the rice sequence and two sorghum physical maps that integrate genetic markers, bacterial artificial chromosome (BAC) fingerprints, and BAC hybridization data. The sorghum maps largely tile a genomic component containing 41% of BACs but 80% of single-copy genes that shows conserved microsynteny with rice and partially tile a nonsyntenic component containing 46% of BACs but only 13% of single-copy genes. The remaining BACs are centromeric (4%) or unassigned (8%). The two genomic components correspond to cytologically discernible "euchromatin" and "heterochromatin." Gene and repetitive DNA distributions support this classification. Greater microcolinearity in recombinogenic (euchromatic) than nonrecombinogenic (heterochromatic) regions is consistent with the hypothesis that genomic rearrangements are usually deleterious, thus more likely to persist in nonrecombinogenic regions by virtue of Muller's ratchet. Interchromosomal centromeric rearrangements may have fostered diploidization of a polyploid cereal progenitor. Model plant sequences better guide studies of related genomes in recombinogenic than nonrecombinogenic regions. Bridging of 35 physical gaps in the rice sequence by sorghum BAC contigs illustrates reciprocal benefits of comparative approaches that extend at least across the cereals and perhaps beyond.


Assuntos
Estruturas Cromossômicas , Mapeamento Físico do Cromossomo/métodos , Poaceae/genética , Recombinação Genética , Sintenia , Sequência de Bases , Eucromatina , Genoma de Planta , Heterocromatina , Dados de Sequência Molecular , Oryza/genética , Sorghum/genética
5.
Genetics ; 166(1): 389-417, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15020432

RESUMO

We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM ( approximately 600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM ( approximately 500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.


Assuntos
Genoma de Planta , Gossypium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Diploide , Evolução Molecular , Duplicação Gênica , Ligação Genética , Marcadores Genéticos , Repetições Minissatélites , Polimorfismo de Nucleotídeo Único , Poliploidia , Recombinação Genética , Sitios de Sequências Rotuladas
6.
Genetics ; 165(1): 367-86, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14504243

RESUMO

We report a genetic recombination map for Sorghum of 2512 loci spaced at average 0.4 cM ( approximately 300 kb) intervals based on 2050 RFLP probes, including 865 heterologous probes that foster comparative genomics of Saccharum (sugarcane), Zea (maize), Oryza (rice), Pennisetum (millet, buffelgrass), the Triticeae (wheat, barley, oat, rye), and Arabidopsis. Mapped loci identify 61.5% of the recombination events in this progeny set and reveal strong positive crossover interference acting across intervals of

Assuntos
Evolução Biológica , Mapeamento Cromossômico , Poaceae/genética , Sorghum/genética , Genes Dominantes , Marcadores Genéticos , Genoma de Planta , Hibridização Genética , Recombinação Genética , Sitios de Sequências Rotuladas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA