Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pain ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38723182

RESUMO

ABSTRACT: Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. Female C57BL/6JOlaHsd mice were used, and they received only paclitaxel vehicle (n = 38) or paclitaxel via intravenous injection (n = 19, 70 mg/kg) once a week for 4 weeks (Study 1) or intraperitoneally (n = 19, 10 mg/kg) every 2 days for 7 times (Study 2). At the end of treatment and in the follow-up, mice underwent behavioral and neurophysiological assessments of PIPN. At the same time points, some mice were killed and dorsal root ganglia, skin, and sciatic and caudal nerve samples underwent pathological examination. Serum neurofilament light levels were also measured. The differences in the neurotoxicity parameters were analyzed using a nonparametric Mann-Whitney test, with significance level set at P < 0.05. Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.

2.
J Peripher Nerv Syst ; 29(1): 47-57, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009865

RESUMO

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common and long-lasting adverse event of several anticancer compounds, for which treatment has not yet been developed. To fill this gap, preclinical studies are warranted, exploiting highly translational outcome measure(s) to transfer data from bench to bedside. Nerve excitability testing (NET) enables to test in vivo axonal properties and can be used to monitor early changes leading to axonal damage. METHODS: We tested NET use in two different CIPN rat models: oxaliplatin (OHP) and paclitaxel (PTX). Animals (female) were chronically treated with either PTX or OHP and compared to respective control animals. NET was performed as soon as the first injection was administered. At the end of the treatment, CIPN onset was verified via a multimodal and robust approach: nerve conduction studies, nerve morphometry, behavioural tests and intraepidermal nerve fibre density. RESULTS: NET showed the typical pattern of axonal hyperexcitability in the 72 h following the first OHP administration, whereas it showed precocious signs of axonal damage in PTX animals. At the end of the month of treatment, OHP animals showed a pattern compatible with a mild axonal sensory polyneuropathy. Instead, PTX cohort was characterised by a rather severe sensory axonal polyneuropathy with minor signs of motor involvement. INTERPRETATION: NET after the first administration demonstrated the ongoing OHP-related channelopathy, whereas in PTX cohort it showed precocious signs of axonal damage. Therefore, NET could be suggested as an early surrogate marker in clinical trials, to detect precocious changes leading to axonal damage.


Assuntos
Antineoplásicos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Feminino , Ratos , Animais , Antineoplásicos/toxicidade , Oxaliplatina/toxicidade , Axônios , Paclitaxel/toxicidade , Síndromes Neurotóxicas/diagnóstico
3.
J Peripher Nerv Syst ; 29(1): 58-71, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126610

RESUMO

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS: Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS: At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION: Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.


Assuntos
Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Animais , Masculino , Ratos , Síndromes Neurotóxicas/patologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ratos Wistar , Pele/patologia
4.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511245

RESUMO

Cisplatin (CDDP) is an efficient chemotherapeutic agent broadly used to treat solid cancers. Chemotherapy with CDDP can cause significant unwanted side effects such as renal toxicity and peripheral neurotoxicity. CDDP is a substrate of organic cation transporters (OCT), transporters that are highly expressed in renal tissue. Therefore, CDDP uptake by OCT may play a role in causing unwanted toxicities of CDDP anticancer treatment. In this study, the contribution of the mouse OCT2 (mOCT2) to CDDP nephro- and peripheral neurotoxicity was investigated by comparing the effects of cyclic treatment with low doses of CDDP on renal and neurological functions in wild-type (WT) mice and mice with genetic deletion of OCT2 (OCT2-/- mice). This CDDP treatment protocol caused significant impairment of kidneys and peripherical neurological functions in WT mice. These effects were significantly reduced in OCT2-/- mice, however, less profoundly than what was previously measured in mice with genetic deletion of both OCT1 and 2 (OCT1-2-/- mice). Comparing the apparent affinities (IC50) of mOCT1 and mOCT2 for CDDP, the mOCT1 displayed a higher affinity for CDDP than the mOCT2 (IC50: 9 and 558 µM, respectively). Also, cellular toxicity induced by incubation with 100 µM CDDP was more pronounced in cells stably expressing mOCT1 than in cells expressing mOCT2. Therefore, in mice, CDDP uptake by both OCT1 and 2 contributes to the development of CDDP undesired side effects. OCT seem to be suitable targets for establishing treatment protocols aimed at decreasing unwanted CDDP toxicity and improving anticancer treatment with CDDP.


Assuntos
Cisplatino , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Transporte Biológico , Cisplatino/toxicidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675203

RESUMO

Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.


Assuntos
Tecido Nervoso , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Tecido Nervoso/patologia , Paclitaxel/efeitos adversos , Axônios/patologia , Síndromes Neurotóxicas/patologia
6.
Biomedicines ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672528

RESUMO

The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.

7.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638498

RESUMO

This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, ß-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.

8.
Neurotherapeutics ; 18(4): 2324-2336, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34668147

RESUMO

Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most frequent side effects of antineoplastic treatment, particularly of lung, breast, prostate, gastrointestinal, and germinal cancers, as well as of different forms of leukemia, lymphoma, and multiple myeloma. Currently, no effective therapies are available for CIPN prevention, and symptomatic treatment is frequently ineffective; thus, several clinical trials are addressing this unmet clinical need. Among possible pharmacological treatments of CIPN, modulation of the endocannabinoid system might be particularly promising, especially in those CIPN types where analgesia and neuroinflammation modulation might be beneficial. In fact, several clinical trials are ongoing with the specific aim to better investigate the changes in endocannabinoid levels induced by systemic chemotherapy and the possible role of endocannabinoid system modulation to provide relief from CIPN symptoms, a hypothesis supported by preclinical evidence but never consistently demonstrated in patients. Interestingly, endocannabinoid system modulation might be one of the mechanisms at the basis of the reported efficacy of exercise and physical therapy in CIPN patients. This possible virtuous interplay will be discussed in this review.


Assuntos
Antineoplásicos , Canabinoides , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Antineoplásicos/efeitos adversos , Canabinoides/uso terapêutico , Humanos , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Resultado do Tratamento
9.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494384

RESUMO

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Imunoglobulinas Intravenosas/administração & dosagem , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Síndromes Neurotóxicas/diagnóstico , Paclitaxel/uso terapêutico , Doenças do Sistema Nervoso Periférico/diagnóstico , Ratos , Resultado do Tratamento
10.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882796

RESUMO

The comments sent by Stehr, Lundstom and Karlsson with reference to our article "Calmangafodipir reduces sensory alterations and prevents intraepidermal nerve fiber loss in a mouse model of oxaliplatin-induced peripheral neurotoxicity" are very interesting, since they suggest possible mechanisms of action of the compound, which might contribute to its protective action [...].

11.
Exp Neurol ; 334: 113458, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32889007

RESUMO

Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.


Assuntos
Antineoplásicos/toxicidade , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso Periférico/psicologia , Distribuição Aleatória
12.
Antioxidants (Basel) ; 9(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645985

RESUMO

Oxaliplatin (OHP) is an antineoplastic compound able to induce peripheral neurotoxicity. Oxidative stress has been suggested to be a key factor in the development of OHP-related peripheral neurotoxicity. Mangafodipir, a contrast agent possessing mitochondrial superoxide dismutase (MnSOD)-mimetic activity, has been tested as a cytoprotector in chemotherapy-induced peripheral neurotoxicity (CIPN). Calmangafodipir (PledOx®) has even better therapeutic activity. We investigated a BALB/c mouse model of OHP-related CIPN and the effects of the pre-treatment of calmangafodipir (2.5, 5, or 10 mg/kg intravenously) on sensory perception, and we performed a pathological study on skin biopsies to assess intraepidermal nerve fiber (IENF) density. At the end of the treatments, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced mechanical allodynia and cold thermal hyperalgesia, but calmangafodipir 5 mg/kg prevented these effects. Accordingly, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced a significant reduction in IENF density, but calmangafodipir 5 mg/kg prevented this reduction. These results confirm a protective effect of calmangafodipir against OHP-induced small fiber neuropathy. Interestingly, these results are in agreement with previous observations suggesting a U-shaped effect of calmangafodipir, with the 10 mg/kg dose less effective than the lower doses.

13.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456361

RESUMO

In northern Italy, biomass burning-derived (BB) particles and diesel exhaust particles (DEP) are considered the most significant contributors to ultrafine particle (UFP) emission. However, a comparison between their impact on different brain regions was not investigated until now. Therefore, male BALB/c mice were treated with a single or three consecutive intratracheal instillations using 50 µg of UFPs in 100 µL of isotonic saline solution or 100 µL of isotonic saline solution alone, and brains were collected and analyzed. Proteins related to oxidative stress and inflammation, as well as Alzheimer's disease markers, were examined in the hippocampus, cerebellum, and the rest of the brain (RoB). Histopathological examination of the brain was also performed. Moreover, correlations among different brain, pulmonary, and cardiovascular markers were performed, allowing us to identify the potentially most stressful UFP source. Although both acute exposures induced inflammatory pathways in mouse brain, only DEP showed strong oxidative stress. The sub-acute exposure also induced the modulation of APP and BACE1 protein levels for both UFPs. We observed that DEP exposure is more harmful than BB, and this different response could be explained by this UFP's different chemical composition and reactivity.


Assuntos
Poluição do Ar/efeitos adversos , Encéfalo/efeitos dos fármacos , Inflamação , Doenças Neurodegenerativas/induzido quimicamente , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Material Particulado/toxicidade , Emissões de Veículos/toxicidade
14.
Cancers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471028

RESUMO

Oxaliplatin-induced peripheral neurotoxicity (OIPN) is a severe and potentially permanent side effect of cancer treatment affecting the majority of oxaliplatin-treated patients, mostly with the onset of acute symptoms, but also with the establishment of a chronic sensory loss that is supposed to be due to dorsal root ganglia neuron damage. The pathogenesis of acute as well as chronic OIPN is still not completely known, and this is a limitation in the identification of effective strategies to prevent or limit their occurrence. Despite intense investigation at the preclinical and clinical levels, no treatment can be suggested for the prevention of OIPN, and only limited evidence for the efficacy of duloxetine in the treatment setting has been provided. In this review, ongoing neuroprotection clinical trials in oxaliplatin-treated patients will be analyzed with particular attention paid to the hypothesis leading to the study, to the trial strengths and weaknesses, and to the outcome measures proposed to test the efficacy of the therapeutic approach. It can be concluded that 1) prevention and treatment of OIPN still remains an important and unmet clinical need, 2) further, high-quality research is mandatory in order to achieve reliable and effective results, and 3) dose and schedule modification of OHP-based chemotherapy is currently the most effective approach to limit the severity of OIPN.

15.
Arch Toxicol ; 94(7): 2517-2522, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333051

RESUMO

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is a severe and long-lasting side effect of anticancer therapy, which can severely impair patients' quality of life. It is a sensory and length-dependent neuropathy, which predominantly affects large myelinated fibers. Easy and reliable monitoring of CIPN in patients is still an unmet clinical need. Since increasing clinical evidence supports the potential use of neurofilament light chain (NfL) as a biomarker of axonal injury, in this study we measured serum NfL levels in animals chronically treated with cisplatin (CDDP) and paclitaxel (PTX), two antineoplastic drugs with different neuronal targets. Wistar rats were treated with CDDP (2 mg/kg i.p. twice/week for 4 weeks) or PTX (10 mg/kg i.v. once/week for 4 weeks). Repeated serum NfL quantification was obtained using the Single Molecule Array (Simoa) technology. The onset and progression of peripheral neurotoxicity were evaluated through neurophysiology, morphological assessments and intraepidermal nerve fibers density quantification. Our results showed that serum NfL measurements correlated with the severity of axonal damage. In fact, both treatments induced serum NfL increase, but higher levels were evidenced in PTX-treated animals, compared with CDDP-treated rats, affected by a milder neurotoxicity. Notably, also the timing of the NfL level increase was associated with the severity of morphological and functional alterations of axonal structure. Therefore, NfL could be a useful biomarker for axonal damage in order to follow the onset and severity of axonal degeneration and possibly limit the occurrence of serious PNS disease.


Assuntos
Antineoplásicos , Axônios/metabolismo , Cisplatino , Proteínas de Neurofilamentos/sangue , Síndromes Neurotóxicas/sangue , Paclitaxel , Nervos Periféricos/metabolismo , Doenças do Sistema Nervoso Periférico/sangue , Animais , Axônios/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Ratos Wistar , Índice de Gravidade de Doença , Regulação para Cima
16.
Neuropharmacology ; 164: 107905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811874

RESUMO

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Assuntos
Antineoplásicos/toxicidade , Axônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Oxaliplatina/antagonistas & inibidores , Oxaliplatina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Topiramato/farmacologia , Animais , Feminino , Condução Nervosa/efeitos dos fármacos , Medição da Dor , Ratos , Ratos Wistar
17.
Front Aging Neurosci ; 11: 299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749696

RESUMO

Aging is associated with an exaggerated response to peripheral inflammatory challenges together with behavioral and cognitive deficits. Studies considering both age and sex remain limited, despite sex dimorphism of astrocytes and microglial cells is largely recognized. To fill this knowledge gap, we investigated the effect of a single intraperitoneal lipopolysaccharide (LPS) administration in adult and aged mice. We assessed the expression of different inflammatory mediators, and the microglial response through binding of [18F]-VC701 tracer to translocator protein (TSPO) receptors in the male and female brain. Aged female brain showed a higher pro-inflammatory response to LPS compared to adult female and to aged male, as revealed by ex vivo binding to TSPO receptors and pro-inflammatory mediator transcript levels. The highest astroglial reaction was observed in the brain of aged females. Differently to the other groups of animals, in aged males LPS challenge did not affect transcription of triggering receptor expressed on myeloid cells 2 (TREM2). In conclusion, our study shows that in the mouse's brain the neuro-inflammatory response to an acute peripheral insult is sex- and age-dependent. Moreover, our results might set the basis for further studies aimed at identifying sex-related targets involved in the modulation of the aberrant neuro-inflammatory response that characterizes aging. This knowledge could be relevant for the treatment of conditions such as delirium and dementia.

18.
Arch Toxicol ; 93(10): 2835-2848, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31493026

RESUMO

Cisplatin (CDDP) is one of the most important chemotherapeutic drugs in modern oncology. However, its use is limited by severe toxicities, which impair life quality after cancer. Here, we investigated the role of organic cation transporters (OCT) in mediating toxicities associated with chronic (twice the week for 4 weeks) low-dose (4 mg/kg body weight) CDDP treatment (resembling therapeutic protocols in patients) of wild-type (WT) mice and mice with OCT genetic deletion (OCT1/2-/-). Functional and molecular analysis showed that OCT1/2-/- mice are partially protected from CDDP-induced nephrotoxicity and peripheral neurotoxicity, whereas ototoxicity was not detectable. Surprisingly, proteomic analysis of the kidneys demonstrated that genetic deletion of OCT1/2 itself was associated with significant changes in expression of proinflammatory and profibrotic proteins which are part of an OCT-associated protein network. This signature directly regulated by OCT consisted of three classes of proteins, viz., profibrotic proteins, proinflammatory proteins, and nutrient sensing molecules. Consistent with functional protection, CDDP-induced proteome changes were more severe in WT mice than in OCT1/2-/- mice. Laser ablation-inductively coupled plasma-mass spectrometry analysis demonstrated that the presence of OCT was not associated with higher renal platinum concentrations. Taken together, these results redefine the role of OCT from passive membrane transporters to active modulators of cell signaling in the kidney.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Fator 1 de Transcrição de Octâmero/genética , Transportador 2 de Cátion Orgânico/genética , Animais , Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/genética , Proteômica , Transdução de Sinais/efeitos dos fármacos
19.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181746

RESUMO

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/análise , Citocromo P-450 CYP1B1/análise , Proteínas de Choque Térmico HSP70/análise , Heme Oxigenase-1/análise , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise
20.
Sci Rep ; 8(1): 15084, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305703

RESUMO

Oxaliplatin induced peripheral neurotoxicity is characterized by an acute cold-induced syndrome characterized by cramps, paresthesias/dysesthesias in the distal limbs and perioral region, that develops rapidly and lasts up to one week affecting nearly all the patients as well as by long-lasting symptoms. It has been previously shown that pharmacological or genetic ablation of TRPA1 responses reduces oxaliplatin-induced peripheral neurotoxicity in mouse models. In the present report, we show that treatment with concentrations of oxaliplatin similar to those found in plasma of treated patients leads to an acidification of the cytosol of mouse dorsal root ganglia neurons in culture and this in turn is responsible for sensitization of TRPA1 channels, thereby providing a mechanistic explanation to toxicity of oxaliplatin. Reversal of the acidification indeed leads to a significantly reduced activity of TRPA1 channels. Last, acidification occurs also in vivo after a single injection of therapeutically-relevant doses of oxaliplatin.


Assuntos
Gânglios Espinais/citologia , Concentração de Íons de Hidrogênio , Oxaliplatina/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Biomarcadores , Cisplatino/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Camundongos , Ácido Oxálico/metabolismo , Oxaliplatina/efeitos adversos , Canal de Cátion TRPA1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA