Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1156494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143733

RESUMO

In a precision medicine perspective, among the biomarkers potentially useful for early diagnosis of cancers, as well as to define their prognosis and eventually to identify novel and more effective therapeutic targets, there are the long non-coding RNAs (lncRNAs). The term lncRNA identifies a class of non-coding RNA molecules involved in the regulation of gene expression that intervene at the transcriptional, post-transcriptional, and epigenetic level. Metastasis is a natural evolution of some malignant tumours, frequently encountered in patients with advanced cancers. Onset and development of metastasis represents a detrimental event that worsen the patient's prognosis by profoundly influencing the quality of life and is responsible for the ominous progression of the disease. Due to the peculiar environment and the biomechanical properties, bone is a preferential site for the secondary growth of breast, prostate and lung cancers. Unfortunately, only palliative and pain therapies are currently available for patients with bone metastases, while no effective and definitive treatments are available. The understanding of pathophysiological basis of bone metastasis formation and progression, as well as the improvement in the clinical management of the patient, are central but challenging topics in basic research and clinical practice. The identification of new molecular species that may have a role as early hallmarks of the metastatic process could open the door to the definition of new, and more effective, therapeutic and diagnostic approaches. Non-coding RNAs species and, particularly, lncRNAs are promising compounds in this setting, and their study may bring to the identification of relevant processes. In this review, we highlight the role of lncRNAs as emerging molecules in mediating the formation and development of bone metastases, as possible biomarkers for cancer diagnosis and prognosis, and as therapeutic targets to counteract cancer spread.


Assuntos
Doenças da Medula Óssea , Neoplasias Ósseas , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prognóstico , Qualidade de Vida , Biomarcadores Tumorais/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética
3.
Front Cell Dev Biol ; 10: 889002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465332

RESUMO

Post-translational modifications comprise series of enzymatically-driven chemical modifications, virtually involving the entire cell proteome, that affect the fate of a target protein and, in turn, cell activity. Different classes of modifications can be established ranging from phosphorylation, glycosylation, ubiquitination, acetylation, methylation, lipidation and their inverse reactions. Among these, SUMOylation and NEDDylation are ubiquitin-like multi-enzymatic processes that determine the bound of SUMOs and NEDD8 labels, respectively, on defined amino acidic residues of a specific protein and regulate protein function. As fate-determinants of several effectors and mediators, SUMOylation and NEDDylation play relevant roles in many aspects of tumor cell biology. Bone represents a preferential site of metastasis for solid tumors (e.g., breast and prostate cancers) and the primary site of primitive tumors (e.g., osteosarcoma, chondrosarcoma). Deregulation of SUMOylation and NEDDylation affects different aspects of neoplastic transformation and evolution such as epithelial-mesenchymal transition, adaptation to hypoxia, expression and action of tumor suppressors and oncogenic mediators, and drug resistance. Thereby, they represent potential therapeutic targets. This narrative review aims at describing the involvement and regulation of SUMOylation and NEDDylation in tumor biology, with a specific focus on primary and secondary bone tumors, and to summarize and highlight their potentiality in diagnostics and therapeutic strategies.

4.
Front Med (Lausanne) ; 9: 832154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372393

RESUMO

Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder characterized by recurrent acute vaso-occlusive crises (VOCs and anemia). Gold standard treatments are hydroxycarbamide (HC) and/or different red blood cell (RBC) transfusion regimens to limit disease progression. Here, we report a retrospective study on 1,579 SCD patients (median age 23 years; 802 males/777 females), referring to 34 comprehensive Italian centers for hemoglobinopathies. Although we observed a similar proportion of Caucasian (47.9%) and African (48.7%) patients, Italian SCD patients clustered into two distinct overall groups: children of African descent and adults of Caucasian descent. We found a subset of SCD patients requiring more intensive therapy with a combination of HC plus chronic transfusion regimen, due to partial failure of HC treatment alone in preventing or reducing sickle cell-related acute manifestations. Notably, we observed a higher use of acute transfusion approaches for SCD patients of African descent when compared to Caucasian subjects. This might be related to (i) age of starting HC treatment; (ii) patients' low social status; (iii) patients' limited access to family practitioners; or (iv) discrimination. In our cohort, alloimmunization was documented in 135 patients (8.5%) and was more common in Caucasians (10.3%) than in Africans (6.6%). Alloimmunization was similar in male and female and more frequent in adults than in children. Our study reinforces the importance of donor-recipient exact matching for ABO, Rhesus, and Kell antigen systems for RBC compatibility as a winning strategy to avoid or limit alloimmunization events that negatively impact the clinical management of SCD-related severe complications. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT03397017.

5.
Biomolecules ; 11(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572548

RESUMO

Bone metastasis is a serious and often lethal complication of particularly frequent carcinomas, such as breast and prostate cancers, which not only reduces survival but also worsens the patients' quality of life. Therefore, it is important to find new and/or additional therapeutic possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean diet (MD) is effective in the prevention of cancer and improves cancer patients' health, thus, here, we considered its impact on bone metastasis. We highlighted some molecular events relevant for the development of a metastatic phenotype in cancer cells and the alterations of physiological bone remodeling, which occur during skeleton colonization. We then considered those natural compounds present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this bioactivity by the dietary components of the MD, together with its wide access to all people, could help not only to maintain healthy status but also to improve the quality of life of patients with bone metastases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/terapia , Quimioterapia Adjuvante , Dieta Mediterrânea , Progressão da Doença , Alimentos , Neoplasias da Próstata/terapia , Neoplasias da Mama/patologia , Feminino , Humanos , Masculino , Neoplasias da Próstata/patologia
6.
Biomedicines ; 9(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201209

RESUMO

Bone metastases represent the main problem related to the progression of breast cancer, as they are the main cause of death for these patients. Unfortunately, to date, bone metastases are incurable and represent the main challenge for the researcher. Chemokines and cytokines affect different stages of the metastatic process, and in bone metastases, interleukin (IL) -6, IL-8, IL-1ß, and IL-11 participate in the interaction between cancer cells and bone cells. This review focuses on IL-11, a pleiotropic cytokine that, in addition to its well-known effects on several tissues, also mediates certain signals in cancer cells. In particular, as IL-11 works on bone remodeling, it plays a relevant role in the osteolytic vicious cycle of bone resorption and tumour growth, which characterizes bone metastasis. IL-11 appears as a candidate for anti-metastatic therapy. Even if different therapeutic approaches have considered IL-11 and the downstream-activated gp130 signaling pathways activated downstream of gp130, further studies are needed to decipher the contribution of the different cytokines and their mechanisms of action in breast cancer progression to define therapeutic strategies.

7.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670622

RESUMO

The Hippo pathway is involved in human tumorigenesis and tissue repair. Here, we investigated the Hippo coactivator Yes-associated protein 1 (YAP1) and the kinase large tumor suppressor 1/2 (LATS1/2) in tumors of the parathyroid glands, which are almost invariably associated with primary hyperparathyroidism. Compared with normal parathyroid glands, parathyroid adenomas (PAds) and carcinomas show variably but reduced nuclear YAP1 expression. The kinase LATS1/2, which phosphorylates YAP1 thus promoting its degradation, was also variably reduced in PAds. Further, YAP1 silencing reduces the expression of the key parathyroid oncosuppressor multiple endocrine neoplasia type 1(MEN1), while MEN1 silencing increases YAP1 expression. Treatment of patient-derived PAds-primary cell cultures and Human embryonic kidney 293A (HEK293A) cells expressing the calcium-sensing receptor (CASR) with the CASR agonist R568 induces YAP1 nuclear accumulation. This effect was prevented by the incubation of the cells with RhoA/Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors Y27632 and H1152. Lastly, CASR activation increased the expression of the YAP1 gene targets CYR61, CTGF, and WNT5A, and this effect was blunted by YAP1 silencing. Concluding, here we provide preliminary evidence of the involvement of the Hippo pathway in human tumor parathyroid cells and of the existence of a CASR-ROCK-YAP1 axis. We propose a tumor suppressor role for YAP1 and LATS1/2 in parathyroid tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Glândulas Paratireoides/metabolismo , Neoplasias das Paratireoides/genética , Receptores de Detecção de Cálcio/genética , Fatores de Transcrição/genética , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amidas/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias das Paratireoides/metabolismo , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Interferência de RNA , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
8.
Biomedicines ; 8(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213024

RESUMO

Breast cancer patients are at a high risk of complications from bone metastasis. Molecular characterization of bone metastases is essential for the discovery of new therapeutic targets. Here, we investigated the expression and the intracellular distribution of KH RNA binding domain containing, signal transduction associated 1 (KHDRBS1), leptin, leptin receptor (LEPR), and adiponectin in bone metastasis from breast carcinoma and looked for correlations between the data. The expression of these proteins is known in breast carcinoma, but it has not been investigated in bone metastatic tissue to date. Immunohistochemical analysis was carried out on bone metastasis specimens, then semiquantitative evaluation of the results and the Pearson test were performed to determine eventual correlations. KHDRBS1 expression was significantly higher in the nuclei than in the cytosol of metastatic cells; LEPR was prevalently observed in the cytosol and the nuclei; leptin and adiponectin were found in metastatic cells and stromal cells; the strongest positive correlation was between nuclear KHDRBS1 and nuclear LEPR expression. Taken together, our findings support the importance of the leptin/LEPR/KHDRBS1 axis and of adiponectin in the progression of bone metastasis and suggest their potential application in pharmacological interventions.

9.
Mol Cancer ; 19(1): 126, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799870

RESUMO

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1186/s12943-015-0389-y.

11.
Cancers (Basel) ; 12(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640686

RESUMO

Bone is the primarily preferred site for breast and prostate cancer to metastasize. Bone metastases are responsible for most deaths related to breast and prostate cancer. The bone's particular microenvironment makes it conducive for the growth of cancer cells. Studies on bone metastasis have focused on the interaction between cancer cells and the bone microenvironment. Osteocytes, the most common cell type of bone tissue, have received little attention in bone metastasis, although they are master signal sensors, integrators, and skeleton transducers. They play an important role in regulating bone mass by acting on both osteoblasts and osteoclasts, through the release of proteins such as sclerostin, Dickkopf-1 (DKK-1), and fibroblast growth factor 23 (FGF23). Osteocytes have been extensively re-evaluated, in light of their multiple functions: with different experimental approaches, it has been shown that, indeed, osteocytes are actively involved in the colonization of bone tissue by cancer cells. The present review focuses on recent research on the role that osteocytes play in bone metastasis of breast and prostate cancers. Moreover, the studies here summarized open up perspectives for new therapeutic approaches focused on modulating the activity of osteocytes to improve the condition of the bone metastatic patients. A better understanding of the complex interactions between cancer cells and bone-resident cells is indispensable for identifying potential therapeutic targets to stop tumor progression and prevent bone metastases.

12.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316552

RESUMO

Breast cancer is the most common type of cancer in women, and the occurrence of metastasis drastically worsens the prognosis and reduces overall survival. Understanding the biological mechanisms that regulate the transformation of malignant cells, the consequent metastatic transformation, and the immune surveillance in the tumor progression would contribute to the development of more effective and targeted treatments. In this context, microRNAs (miRNAs) have proven to be key regulators of the tumor-immune cells crosstalk for the hijack of the immunosurveillance to promote tumor cells immune escape and cancer progression, as well as modulators of the metastasis formation process, ranging from the preparation of the metastatic site to the transformation into the migrating phenotype of tumor cells. In particular, their deregulated expression has been linked to the aberrant expression of oncogenes and tumor suppressor genes to promote tumorigenesis. This review aims at summarizing the role and functions of miRNAs involved in antitumor immune response and in the metastasis formation process in breast cancer. Additionally, miRNAs are promising targets for gene therapy as their modulation has the potential to support or inhibit specific mechanisms to negatively affect tumorigenesis. With this perspective, the most recent strategies developed for miRNA-based therapeutics are illustrated.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , MicroRNAs/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Metástase Neoplásica , Evasão Tumoral
13.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033341

RESUMO

The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.


Assuntos
Adiponectina/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Leptina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Mitose/fisiologia , Fosforilação/fisiologia
14.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121879

RESUMO

Hepatocyte growth factor (HGF) and transforming growth factor ß1 (TGFß1) are biological stimuli of the micro-environment which affect bone metastasis phenotype through transcription factors, but their influence on the growth is scarcely known. In a xenograft model prepared with 1833 bone metastatic cells, derived from breast carcinoma cells, we evaluated mice survival and Twist and Snail expression and localization after competitive inhibition of HGF with NK4, or after blockade of TGFß1-type I receptor (RI) with SB431542: in the latter condition HGF was also measured. To explain the in vivo data, in 1833 cells treated with SB431542 plus TGFß1 we measured HGF formation and the transduction pathway involved. Altogether, HGF seemed relevant for bone-metastatic growth, being hampered by NK4 treatment, which decreased Twist more than Snail in the metastasis bulk. TGFß1-RI blockade enhanced HGF in metastasis and adjacent bone marrow, while reducing prevalently Snail expression at the front and bulk of bone metastasis. The HGF accumulation in 1833 cells depended on an auxiliary signaling pathway, triggered by TGFß1 under SB431542, which interfered in the transcription of HGF activator inhibitor type 1 (HAI-1) downstream of TGFß-activated kinase 1 (TAK1): HGF stimulated Twist transactivation. In conclusion, the impairment of initial outgrowth with NK4 seemed therapeutically promising more than SB431542 chemotherapy; a functional correlation between Twist and Snail in bone metastasis seemed to be influenced by the biological stimuli of the micro-environment, and the targeting of these phenotype biomarkers might inhibit metastasis plasticity and colonization, even if it would be necessary to consider the changes of HGF levels in bone metastases undergoing TGFß1-RI blockade.


Assuntos
Benzamidas/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Dioxóis/uso terapêutico , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Animais , Neoplasias Ósseas/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos
15.
Cells ; 8(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744029

RESUMO

Bone is the primary site where some cancers develop secondary growth, particularly those derived from breast and prostate tissue. The spread of metastasis to distant sites relies on complex mechanisms by which only cells endowed with certain characteristics are able to reach secondary growth sites. Platelets play a pivotal role in tumour growth, by conferring resistance to shear stress to the circulating tumour cells and protection against natural killer cell attack. Mature polyploid megakaryocytes (MKs) reside in close proximity to the vascular sinusoids of bone marrow, where their primary function is to produce platelets. Emerging evidence has demonstrated that MKs are essential for skeletal homeostasis, due to the expression and production of the bone-related proteins osteocalcin, osteonectin, bone morphogenetic protein, osteopontin, bone sialoprotein, and osteoprotegerin. Debate surrounds the role that MKs play in the development of bone metastasis, which is the topic of this mini-review.


Assuntos
Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Progressão da Doença , Megacariócitos/patologia , Animais , Plaquetas/metabolismo , Neoplasias Ósseas/patologia , Matriz Extracelular/metabolismo , Homeostase , Humanos
16.
Cell Death Dis ; 9(5): 472, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29700305

RESUMO

Bone is the most common site for breast cancer spread. In the pro-metastatic cell line 1833, derived from MDA-MB-231 breast adenocarcinoma cells, both hypoxia and hepatocyte growth factor (HGF) influence the effect of miR-125b on ETS proto-oncogene 1 transcription factor (ETS1). The effect of hypoxia inducible factor 1 alpha subunit (HIF1A), known to promote metastatic spread by upregulating prostaglandin endoperoxide synthase 2 (PTGS2), may be dampened by miR-125b targeting PTGS2. Here, we investigated whether miR-125b plays a role in breast cancer metastasis by measuring its activity in response to the chemotherapeutic agent NS-398 in a xenograft model. NS-398 is typically used in the clinic to target PTGS2. We also aimed to describe the molecular mechanisms in vitro, since the enhancement of epithelial properties may favor the efficacy of therapies. We report that in the xenograft model, miR-125b reduced metastasis to the bone. We also report suppression of PTGS2 enhanced survival by decreasing HIF1A in cells within the bone marrow. In 1833 cells transfected with a miR-125b mimic we observed several phenotypic changes including enhancement of the epithelial marker E-cadherin, a reduction of mesenchymal-associated genes and a reduction of WNT-associated stem cell signaling. Our findings suggest that in vivo, key players of the bone microenvironment promoting breast cancer spread are regulated by miR-125b. In future, biological molecules imitating miR-125b may enhance the sensitivity of chemotherapeutic agents used to counteract bone metastases.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , MicroRNAs/metabolismo , Nitrobenzenos/farmacologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , RNA Neoplásico/metabolismo , Sulfonamidas/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Proto-Oncogene Mas , Proteína Proto-Oncogênica c-ets-1/genética , RNA Neoplásico/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 19(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337876

RESUMO

We examined the influence of microenvironment stimuli on molecular events relevant to the biological functions of 1833-bone metastatic clone and the parental MDA-MB231 cells. (i) In both the cell lines, hepatocyte growth factor (HGF) and the osteoblasts' biological products down regulated nuclear Ets-1-protein level in concomitance with endogenous miR-125b accumulation. In contrast, under hypoxia nuclear Ets-1 was unchanged, notwithstanding the miR-125b increase. (ii) Also, the 1833-cell invasiveness and the expression of Endothelin-1, the target gene of Ets-1/HIF-1, showed opposite patterns under HGF and hypoxia. We clarified the molecular mechanism(s) reproducing the high miR-125b levels with the mimic in 1833 cells. Under hypoxia, the miR-125b mimic maintained a basal level and functional Ets-1 protein, as testified by the elevated cell invasiveness. However, under HGF ectopic miR-125b downregulated Ets-1 protein and cell motility, likely involving an Ets-1-dominant negative form sensible to serum conditions; Ets-1-activity inhibition by HGF implicated HIF-1α accumulation, which drugged Ets-1 in the complex bound to the Endothelin-1 promoter. Altogether, 1833-cell exposure to HGF would decrease Endothelin-1 transactivation and protein expression, with the possible impairment of Endothelin-1-dependent induction of E-cadherin, and the reversion towards an invasive phenotype: this was favoured by Ets-1 overexpression, which inhibited HIF-1α expression and HIF-1 activity. (iii) In MDA-MB231 cells, HGF strongly and rapidly decreased Ets-1, hampering invasiveness and reducing Ets-1-binding to Endothelin-1 promoter; HIF-1α did not form a complex with Ets-1 and Endothelin-1-luciferase activity was unchanged. Overall, depending on the microenvironment conditions and endogenous miR-125b levels, bone-metastatic cells might switch from Ets-1-dependent motility towards colonization/growth, regulated by the balance between Ets-1 and HIF-1.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Fator de Crescimento de Hepatócito/farmacologia , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Microambiente Tumoral , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/metabolismo , Endotelina-1/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Modelos Biológicos , Invasividade Neoplásica , Ativação Transcricional/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
18.
Carcinogenesis ; 38(5): 492-503, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334277

RESUMO

The highlight of the molecular basis and therapeutic targets of the bone-metastatic process requires the identification of biomarkers of metastasis colonization. Here, we studied miR-34a-5p expression, and Met-receptor expression and localization in bone metastases from ductal breast carcinomas, and in ductal carcinomas without history of metastasis (20 cases). miR-34a-5p was elevated in non-metastatic breast carcinoma, intermediate in the adjacent tissue and practically absent in bone metastases, opposite to pair-matched carcinoma. Met-receptor biomarker was highly expressed and inversely correlated with miR-34a-5p using the same set of bone-metastasis tissues. The miR-34a-5p silencing might depend on aberrant-epigenetic mechanisms of plastic-bone metastases, since in 1833 cells under methyltransferase blockade miR-34a-5p augmented. In fact, 1833 cells showed very low endogenous miR-34a-5p, in respect to parental MDA-MB231 breast carcinoma cells, and the restoration of miR-34a-5p with the mimic reduced Met and invasiveness. Notably, hepatocyte growth factor (HGF)-dependent Met stabilization was observed in bone-metastatic 1833 cells, consistent with Met co-distribution with the ligand HGF at plasma membrane and at nuclear levels in bone metastases. Met-protein level was higher in non-metastatic (low grade) than in metastatic (high grade) breast carcinomas, notwithstanding miR-34a-5p-elevated expression in both the specimens. Thus, mostly in non-metastatic carcinomas the elevated miR-34a-5p unaffected Met, important for invasive/mesenchymal phenotype, while possibly targeting some stemness biomarkers related to metastatic phenotype. In personalized therapies against bone metastasis, we suggest miR-34a-5p as a suitable target of epigenetic reprogramming leading to the accumulation of miR-34a-5p and the down-regulation of Met-tyrosine kinase, a key player of the bone-metastatic process.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Biomarcadores Tumorais , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Modelos Biológicos , Proteínas Proto-Oncogênicas c-met/metabolismo
19.
Cell Death Dis ; 8(2): e2578, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151481

RESUMO

Our translational research deals with the influence of microenvironment on the phenotype and colonization of bone metastases from breast carcinoma, and on pre-metastatic niche formation. The aim of the present study was to clarify the origin of hepatocyte growth factor (HGF), ligand of Met receptor, the control of the axis HGF/Met by DNA methylation, and its importance for the nexus supportive cells-metastatic cells and for metastasis outgrowth. In bone metastasis of the 1833-xenograft model, DNA methyltransferase blockade using the chemotherapic drug 5-aza-2'-deoxycytidine (decitabine) strongly reduced the expression of HGF/Met receptor axis and of E-cadherin, with decrease of metastasis wideness and osteolysis, prolonging mice survival. Thus, DNA methylation events acted as commanders of breast carcinoma cells metastatizing to bone influencing the epithelial phenotype. HGF emerged as a bone-marrow stimulus, and the exosomes seemed to furnish HGF to metastatic cells. In fact, decitabine treatment similarly affected some markers of these microvesicles and HGF, indicating that its supply to recipient cells was prevented. Notably, in bone metastasis the hypomethylation of HGF, Met and E-cadherin promoters did not appear responsible for their elevated expression, but we suggest the involvement of hypermethylated regulators and of Wwox oncosuppressor, the latter being affected by decitabine. Wwox expression increased under decitabine strongly localizing in nuclei of bone metastases. We hypothesize a role of Wwox in Met activity since in vitro Wwox overexpression downregulated the level of nuclear-Met protein fragment and Met stability, also under long exposure of 1833 cells to decitabine. HGF enhanced phosphoMet and the activity in nuclei, an effect partially prevented by decitabine. Altogether, the data indicated the importance to target the tumor microenvironment by blocking epigenetic mechanisms, which control critical events for colonization such as HGF/Met axis and Wwox, as therapy of bone metastasis.


Assuntos
Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Epigênese Genética/genética , Fator de Crescimento de Hepatócito/genética , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Decitabina , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Proteínas Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/genética
20.
Int J Mol Sci ; 18(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045433

RESUMO

Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Neoplasias da Mama/patologia , Mama/patologia , Epigênese Genética , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Oxirredutases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA