Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 163(2): 646-61, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19540314

RESUMO

Epoxide hydrolases comprise a family of enzymes important in detoxification and conversion of lipid signaling molecules, namely epoxyeicosatrienoic acids (EETs), to their supposedly less active form, dihydroxyeicosatrienoic acids (DHETs). EETs control cerebral blood flow, exert analgesic, anti-inflammatory and angiogenic effects and protect against ischemia. Although the role of soluble epoxide hydrolase (sEH) in EET metabolism is well established, knowledge on its detailed distribution in rodent brain is rather limited. Here, we analyzed the expression pattern of sEH and of another important member of the EH family, microsomal epoxide hydrolase (mEH), in mouse brain by immunohistochemistry. To investigate the functional relevance of these enzymes in brain, we explored their individual contribution to EET metabolism in acutely isolated brain cells from respective EH -/- mice and wild type littermates by mass spectrometry. We find sEH immunoreactivity almost exclusively in astrocytes throughout the brain, except in the central amygdala, where neurons are also positive for sEH. mEH immunoreactivity is abundant in brain vascular cells (endothelial and smooth muscle cells) and in choroid plexus epithelial cells. In addition, mEH immunoreactivity is present in specific neuronal populations of the hippocampus, striatum, amygdala, and cerebellum, as well as in a fraction of astrocytes. In freshly isolated cells from hippocampus, where both enzymes are expressed, sEH mediates the bulk of EET metabolism. Yet we observe a significant contribution of mEH, pointing to a novel role of this enzyme in the regulation of physiological processes. Furthermore, our findings indicate the presence of additional, hitherto unknown cerebral epoxide hydrolases. Taken together, cerebral EET metabolism is driven by several epoxide hydrolases, a fact important in view of the present targeting of sEH as a potential therapeutic target. Our findings suggest that these different enzymes have individual, possibly quite distinct roles in brain function and cerebral EET metabolism.


Assuntos
Encéfalo/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/metabolismo , Vasos Sanguíneos/enzimologia , Vasos Sanguíneos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Células Cultivadas , Plexo Corióideo/enzimologia , Plexo Corióideo/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Epóxido Hidrolases/genética , Feminino , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Caracteres Sexuais
2.
Neuroscience ; 142(1): 125-37, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16859834

RESUMO

Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.


Assuntos
Adenosina Quinase/metabolismo , Astrócitos/enzimologia , Encéfalo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/enzimologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Contagem de Células/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Técnicas In Vitro , Camundongos , Proteína Básica da Mielina/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Fosfopiruvato Hidratase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA