Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
IEEE Trans Biomed Eng ; 71(1): 106-113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37418404

RESUMO

OBJECTIVE: The episode patterns of paroxysmal atrial fibrillation (AF) may carry important information on disease progression and complication risk. However, existing studies offer very little insight into to what extent a quantitative characterization of AF patterns can be trusted given the errors in AF detection and various types of shutdown, i.e., poor signal quality and non-wear. This study explores the performance of AF pattern characterizing parameters in the presence of such errors. METHODS: To evaluate the performance of the parameters AF aggregation and AF density, both previously proposed to characterize AF patterns, the two measures mean normalized difference and the intraclass correlation coefficient are used to describe agreement and reliability, respectively. The parameters are studied on two PhysioNet databases with annotated AF episodes, also accounting for shutdowns due to poor signal quality. RESULTS: The agreement is similar for both parameters when computed for detector-based and annotated patterns, which is 0.80 for AF aggregation and 0.85 for AF density. On the other hand, the reliability differs substantially, with 0.96 for AF aggregation but only 0.29 for AF density. This finding suggests that AF aggregation is considerably less sensitive to detection errors. The results from comparing three strategies to handle shutdowns vary considerably, with the strategy that disregards the shutdown from the annotated pattern showing the best agreement and reliability. CONCLUSIONS: Due to its better robustness to detection errors, AF aggregation should be preferred. To further improve performance, future research should put more emphasis on AF pattern characterization.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Reprodutibilidade dos Testes , Bases de Dados Factuais , Eletrocardiografia/métodos
2.
Physiol Meas ; 44(11)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494945

RESUMO

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia
3.
IEEE Trans Biomed Eng ; 70(12): 3449-3460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37347631

RESUMO

The present article proposes an ECG simulator that advances modeling of arrhythmias and noise by introducing time-varying signal characteristics. The simulator is built around a discrete-time Markov chain model for simulating atrial and ventricular arrhythmias of particular relevance when analyzing atrial fibrillation (AF). Each state is associated with statistical information on episode duration and heartbeat characteristics. Statistical, time-varying modeling of muscle noise, motion artifacts, and the influence of respiration is introduced to increase the complexity of simulated ECGs, making the simulator well suited for data augmentation in machine learning. Modeling of how the PQ and QT intervals depend on heart rate is also introduced. The realism of simulated ECGs is assessed by three experienced doctors, showing that simulated ECGs are difficult to distinguish from real ECGs. Simulator usefulness is illustrated in terms of AF detection performance when either simulated or real ECGs are used to train a neural network for signal quality control. The results show that both types of training lead to similar performance.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Frequência Cardíaca , Simulação por Computador , Eletrocardiografia/métodos , Redes Neurais de Computação
4.
Front Cardiovasc Med ; 10: 1160242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363094

RESUMO

Background: Smartwatches are commonly capable to record a lead-I-like electrocardiogram (ECG) and perform a photoplethysmography (PPG)-based atrial fibrillation (AF) detection. Wearable technologies repeatedly face the challenge of frequent premature beats, particularly in target populations for screening of AF. Objective: To investigate the potential diagnostic benefit of six-lead ECG compared to single-lead ECG and PPG-based algorithm for AF detection of the wrist-worn device. Methods and results: From the database of DoubleCheck-AF 249 adults were enrolled in AF group (n = 121) or control group of SR with frequent premature ventricular (PVCs) or atrial (PACs) contractions (n = 128). Cardiac rhythm was monitored using a wrist-worn device capable of recording continuous PPG and simultaneous intermittent six-lead standard-limb-like ECG. To display a single-lead ECG, the six-lead ECGs were trimmed to lead-I-like ECGs. Two diagnosis-blinded cardiologists evaluated reference, six-lead and single-lead ECGs as "AF", "SR", or "Cannot be concluded". AF detection based on six-lead ECG, single-lead ECG, and PPG yielded a sensitivity of 99.2%, 95.7%, and 94.2%, respectively. The higher number of premature beats per minute was associated with false positive outcomes of single-lead ECG (18.80 vs. 5.40 beats/min, P < 0.01), six-lead ECG (64.3 vs. 5.8 beats/min, P = 0.018), and PPG-based detector (13.20 vs. 5.60 beats/min, P = 0.05). Single-lead ECG required 3.4 times fewer extrasystoles than six-lead ECG to result in a false positive outcome. In a control subgroup of PACs, the specificity of six-lead ECG, single-lead ECG, and PPG dropped to 95%, 83.8%, and 90%, respectively. The diagnostic value of single-lead ECG (AUC 0.898) was inferior to six-lead ECG (AUC 0.971) and PPG-based detector (AUC 0.921). In a control subgroup of PVCs, the specificity of six-lead ECG, single-lead ECG, and PPG was 100%, 96.4%, and 96.6%, respectively. The diagnostic value of single-lead ECG (AUC 0.961) was inferior to six-lead ECG (AUC 0.996) and non-inferior to PPG-based detector (AUC 0.954). Conclusions: A six-lead wearable-recorded ECG demonstrated the superior diagnostic value of AF detection compared to a single-lead ECG and PPG-based AF detection. The risk of type I error due to the widespread use of smartwatch-enabled single-lead ECGs in populations with frequent premature beats is significant.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37058390

RESUMO

OBJECTIVE: The driver fatigue detection using multi-channel electroencephalography (EEG) has been extensively addressed in the literature. However, the employment of a single prefrontal EEG channel should be prioritized as it provides users with more comfort. Furthermore, eye blinks from such channel can be analyzed as the complementary information. Here, we present a new driver fatigue detection method based on simultaneous EEG and eye blinks analysis using an Fp1 EEG channel. METHODS: First, the moving standard deviation algorithm identifies eye blink intervals (EBIs) to extract blink-related features. Second, the discrete wavelet transform filters the EBIs from the EEG signal. Third, the filtered EEG signal is decomposed into sub-bands, and various linear and nonlinear features are extracted. Finally, the prominent features are selected by the neighbourhood components analysis and fed to a classifier to discriminate between fatigue and alert driving. In this paper, two different databases are investigated. The first one is used for parameters' tuning of proposed method for the eye blink detection and filtering, nonlinear EEG measures, and feature selection. The second one is solely used for testing the robustness of the tuned parameters. MAIN RESULTS: The comparison between the obtained results from both databases by the AdaBoost classifier in terms of sensitivity (90.2% vs. 87.4%), specificity (87.7% vs. 85.5%), and accuracy (88.4% vs. 86.8%) indicates the reliability of the proposed method for the driver fatigue detection. SIGNIFICANCE: Considering the existence of commercial single prefrontal channel EEG headbands, the proposed method can be used to detect the driver fatigue in real-world scenarios.


Assuntos
Eletroencefalografia , Análise de Ondaletas , Humanos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Algoritmos , Bases de Dados Factuais
6.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850820

RESUMO

Intervals of low-quality photoplethysmogram (PPG) signals might lead to significant inaccuracies in estimation of pulse arrival time (PAT) during polysomnography (PSG) studies. While PSG is considered to be a "gold standard" test for diagnosing obstructive sleep apnea (OSA), it also enables tracking apnea-related nocturnal blood pressure fluctuations correlated with PAT. Since the electrocardiogram (ECG) is recorded synchronously with the PPG during PSG, it makes sense to use the ECG signal for PPG signal-quality assessment. (1) Objective: to develop a PPG signal-quality assessment algorithm for robust PAT estimation, and investigate the influence of signal quality on PAT during various sleep stages and events such as OSA. (2) Approach: the proposed algorithm uses R and T waves from the ECG to determine approximate locations of PPG pulse onsets. The MESA database of 2055 PSG recordings was used for this study. (3) Results: the proportions of high-quality PPG were significantly lower in apnea-related oxygen desaturation (matched-pairs rc = 0.88 and rc = 0.97, compared to OSA and hypopnea, respectively, when p < 0.001) and arousal (rc = 0.93 and rc = 0.98, when p < 0.001) than in apnea events. The significantly large effect size of interquartile ranges of PAT distributions was between low- and high-quality PPG (p < 0.001, rc = 0.98), and regular and irregular pulse waves (p < 0.001, rc = 0.74), whereas a lower quality of the PPG signal was found to be associated with a higher interquartile range of PAT across all subjects. Suggested PPG signal quality-based PAT evaluation reduced deviations (e.g., rc = 0.97, rc = 0.97, rc = 0.99 in hypopnea, oxygen desaturation, and arousal stages, respectively, when p < 0.001) and allowed obtaining statistically larger differences between different sleep stages and events. (4) Significance: the implemented algorithm has the potential to increase the robustness of PAT estimation in PSG studies related to nocturnal blood pressure monitoring.


Assuntos
Fotopletismografia , Apneia Obstrutiva do Sono , Humanos , Polissonografia , Frequência Cardíaca , Apneia Obstrutiva do Sono/diagnóstico , Oxigênio
7.
Front Physiol ; 14: 1090696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733909

RESUMO

Pain affects every fifth adult worldwide and is a significant health problem. From a physiological perspective, pain is a protective reaction that restricts physical functions and causes responses in physiological systems. These responses are accessible for evaluation via recorded biosignals and can be favorably used as feedback in active pain therapy via auricular vagus nerve stimulation (aVNS). The aim of this study is to assess the significance of diverse parameters of biosignals with respect to their deflection from cold stressor to deep breathing and their suitability for use as biofeedback in aVNS stimulator. Seventy-eight volunteers participated in two cold pressors and one deep breathing test. Three targeted physiological parameters (RR interval of electrocardiogram, cardiac deflection magnitude Z AC of ear impedance signal, and cardiac deflection magnitude PPG AC of finger photoplethysmogram) and two reference parameters (systolic and diastolic blood pressures BP S and BP D) were derived and monitored. The results show that the cold water decreases the medians of targeted parameters (by 5.6, 9.3%, and 8.0% of RR, Z AC, and PPG AC, respectively) and increases the medians of reference parameters (by 7.1% and 6.1% of BP S and BP D, respectively), with opposite changes in deep breathing. Increasing pain level from relatively mild to moderate/strong with cold stressor varies the medians of targeted and reference parameters in the range from 0.5% to 6.0% (e.g., 2.9% for RR, Z AC and 6.0% for BP D). The physiological footprints of painful cold stressor and relaxing deep breathing were shown for auricular and non-auricular biosignals. The investigated targeted parameters can be used as biofeedback to close the loop in aVNS to personalize the pain therapy and increase its compliance.

8.
Front Physiol ; 13: 928098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923223

RESUMO

Objective: To develop a method for detection of bradycardia and ventricular tachycardia using the photoplethysmogram (PPG). Approach: The detector is based on a dual-branch convolutional neural network (CNN), whose input is the scalograms of the continuous wavelet transform computed in 5-s segments. Training and validation of the CNN is accomplished using simulated PPG signals generated from RR interval series extracted from public ECG databases. Manually annotated real PPG signals from the PhysioNet/CinC 2015 Challenge Database are used for performance evaluation. The performance is compared to that of a pulse-based reference detector. Results: The sensitivity/specificity were found to be 98.1%/97.9 and 76.6%/96.8% for the CNN-based detector, respectively, whereas the corresponding results for the pulse-based detector were 94.7%/99.8 and 67.1%/93.8%, respectively. Significance: The proposed detector may be useful for continuous, long-term monitoring of bradycardia and tachycardia using wearable devices, e.g., wrist-worn devices, especially in situations where sensitivity is favored over specificity. The study demonstrates that simulated PPG signals are suitable for training and validation of a CNN.

9.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891094

RESUMO

The spatial QRS-T angle is a promising health indicator for risk stratification of sudden cardiac death (SCD). Thus far, the angle is estimated solely from 12-lead electrocardiogram (ECG) systems uncomfortable for ambulatory monitoring. Methods to estimate QRS-T angles from reduced-lead ECGs registered with consumer healthcare devices would, therefore, facilitate ambulatory monitoring. (1) Objective: Develop a method to estimate spatial QRS-T angles from reduced-lead ECGs. (2) Approach: We designed a deep learning model to locate the QRS and T wave vectors necessary for computing the QRS-T angle. We implemented an original loss function to guide the model in the 3D space to search for each vector's coordinates. A gradual reduction of ECG leads from the largest publicly available dataset of clinical 12-lead ECG recordings (PTB-XL) is used for training and validation. (3) Results: The spatial QRS-T angle can be estimated from leads {I, II, aVF, V2} with sufficient accuracy (absolute mean and median errors of 11.4° and 7.3°) for detecting abnormal angles without sacrificing patient comfortability. (4) Significance: Our model could enable ambulatory monitoring of spatial QRS-T angles using patch- or textile-based ECG devices. Populations at risk of SCD, like chronic cardiac and kidney disease patients, might benefit from this technology.


Assuntos
Aprendizado Profundo , Arritmias Cardíacas/diagnóstico , Morte Súbita Cardíaca , Eletrocardiografia/métodos , Coração , Humanos
10.
Front Cardiovasc Med ; 9: 869730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463751

RESUMO

Background: Consumer smartwatches have gained attention as mobile health (mHealth) tools able to detect atrial fibrillation (AF) using photoplethysmography (PPG) or a short strip of electrocardiogram (ECG). PPG has limited accuracy due to the movement artifacts, whereas ECG cannot be used continuously, is usually displayed as a single-lead signal and is limited in asymptomatic cases. Objective: DoubleCheck-AF is a validation study of a wrist-worn device dedicated to providing both continuous PPG-based rhythm monitoring and instant 6-lead ECG with no wires. We evaluated its ability to differentiate between AF and sinus rhythm (SR) with particular emphasis on the challenge of frequent premature beats. Methods and Results: We performed a prospective, non-randomized study of 344 participants including 121 patients in AF. To challenge the specificity of the device two control groups were selected: 95 patients in stable SR and 128 patients in SR with frequent premature ventricular or atrial contractions (PVCs/PACs). All ECG tracings were labeled by two independent diagnosis-blinded cardiologists as "AF," "SR" or "Cannot be concluded." In case of disagreement, a third cardiologist was consulted. A simultaneously recorded ECG of Holter monitor served as a reference. It revealed a high burden of ectopy in the corresponding control group: 6.2 PVCs/PACs per minute, bigeminy/trigeminy episodes in 24.2% (31/128) and runs of ≥3 beats in 9.4% (12/128) of patients. AF detection with PPG-based algorithm, ECG of the wearable and combination of both yielded sensitivity and specificity of 94.2 and 96.9%; 99.2 and 99.1%; 94.2 and 99.6%, respectively. All seven false-positive PPG-based cases were from the frequent PVCs/PACs group compared to none from the stable SR group (P < 0.001). In the majority of these cases (6/7) cardiologists were able to correct the diagnosis to SR with the help of the ECG of the device (P = 0.012). Conclusions: This is the first wearable combining PPG-based AF detection algorithm for screening of AF together with an instant 6-lead ECG with no wires for manual rhythm confirmation. The system maintained high specificity despite a remarkable amount of frequent single or multiple premature contractions.

11.
Proc IEEE Inst Electr Electron Eng ; 110(3): 355-381, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35356509

RESUMO

Smart wearables provide an opportunity to monitor health in daily life and are emerging as potential tools for detecting cardiovascular disease (CVD). Wearables such as fitness bands and smartwatches routinely monitor the photoplethysmogram signal, an optical measure of the arterial pulse wave that is strongly influenced by the heart and blood vessels. In this survey, we summarize the fundamentals of wearable photoplethysmography and its analysis, identify its potential clinical applications, and outline pressing directions for future research in order to realize its full potential for tackling CVD.

12.
IEEE J Biomed Health Inform ; 26(3): 1001-1012, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34260361

RESUMO

OBJECTIVE: Blink-related features derived from electroencephalography (EEG) have recently arisen as a meaningful measure of driver's cognitive state. Combined with band power features of low-channel prefrontal EEG data, blink-derived features enhance the detection of driver drowsiness. Yet, it remains unanswered whether synergy of combined blink and EEG band power features for the detection of driver drowsiness may be further boosted if a proper eye blink removal is also applied before EEG analysis. This paper proposes an algorithm for simultaneous eye blink feature extraction and elimination from low-channel prefrontal EEG data. METHODS: Firstly, eye blink intervals (EBIs) are identified from the Fp1 EEG channel using variational mode extraction, and then blink-related features are derived. Secondly, the identified EBIs are projected to the rest of EEG channels and then filtered by a combination of principal component analysis and discrete wavelet transform. Thirdly, a support vector machine with 10-fold cross-validation is employed to classify alert and drowsy states from the derived blink and filtered EEG band power features. MAIN RESULTS: When compared the synergy of eye blink and EEG features before and after filtering by the proposed algorithm, a significant improvement in the mean accuracy of driver drowsiness detection was achieved (71.2% vs. 78.1%, p 0.05). SIGNIFICANCE: This paper validates a novel view of eye blinks as both a source of information and artifacts in EEG-based driver drowsiness detection.


Assuntos
Piscadela , Eletroencefalografia , Algoritmos , Artefatos , Humanos , Vigília , Análise de Ondaletas
13.
Am J Physiol Heart Circ Physiol ; 322(4): H493-H522, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951543

RESUMO

The photoplethysmogram (PPG) signal is widely measured by clinical and consumer devices, and it is emerging as a potential tool for assessing vascular age. The shape and timing of the PPG pulse wave are both influenced by normal vascular aging, changes in arterial stiffness and blood pressure, and atherosclerosis. This review summarizes research into assessing vascular age from the PPG. Three categories of approaches are described: 1) those which use a single PPG signal (based on pulse wave analysis), 2) those which use multiple PPG signals (such as pulse transit time measurement), and 3) those which use PPG and other signals (such as pulse arrival time measurement). Evidence is then presented on the performance, repeatability and reproducibility, and clinical utility of PPG-derived parameters of vascular age. Finally, the review outlines key directions for future research to realize the full potential of photoplethysmography for assessing vascular age.


Assuntos
Fotopletismografia , Rigidez Vascular , Pressão Sanguínea/fisiologia , Hemodinâmica , Análise de Onda de Pulso , Reprodutibilidade dos Testes , Rigidez Vascular/fisiologia
14.
Front Physiol ; 12: 706545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456748

RESUMO

Exercise testing to assess the response to physical rehabilitation or lifestyle interventions is administered in clinics thus at best can be repeated only few times a year. This study explores a novel approach to collecting information on functional performance through walk tests, e.g., a 6-min walk test (6MWT), unintentionally performed in free-living activities. Walk tests are detected in step data provided by a wrist-worn device. Only those events of minute-to-minute variation in walking cadence, which is equal or lower than the empirically determined maximal SD (e.g., 5-steps), are considered as walk test candidates. Out of detected walk tests within the non-overlapping sliding time interval (e.g., 1-week), the one with the largest number of steps is chosen as the most representative. This approach is studied on a cohort of 99 subjects, assigned to the groups of patients with cardiovascular disease (CVD) and healthy subjects below and over 40-years-old, who were asked to wear the device while maintaining their usual physical activity regimen. The total wear time was 8,864 subject-days after excluding the intervals of occasionally discontinued monitoring. About 82% (23/28) of patients with CVD and 88% (21/24) of healthy subjects over 40-years-old had at least a single 6MWT over the 1st month of monitoring. About 52% of patients with CVD (12/23) and 91% (19/21) of healthy subjects over 40-years-old exceeded 500 m. Patients with CVD, on average, walked 46 m shorter 6MWT distance (p = 0.04) compared to healthy subjects. Unintentional walk testing is feasible and could be valuable for repeated assessment of functional performance outside the clinical setting.

15.
IEEE Trans Biomed Eng ; 68(11): 3250-3260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33750686

RESUMO

OBJECTIVE: A large number of atrial fibrillation (AF) detectors have been published in recent years, signifying that the comparison of detector performance plays a central role, though not always consistent. The aim of this study is to shed needed light on aspects crucial to the evaluation of detection performance. METHODS: Three types of AF detector, using either information on rhythm, rhythm and morphology, or segments of ECG samples, are implemented and studied on both real and simulated ECG signals. The properties of different performance measures are investigated, for example, in relation to dataset imbalance. RESULTS: The results show that performance can differ considerably depending on the way detector output is compared to database annotations, i.e., beat-to-beat, segment-to-segment, or episode-to-episode comparison. Moreover, depending on the type of detector, the results substantiate that physiological and technical factors, e.g., changes in ECG morphology, rate of atrial premature beats, and noise level, can have a considerable influence on performance. CONCLUSION: The present study demonstrates overall strengths and weaknesses of different types of detector, highlights challenges in AF detection, and proposes five recommendations on how to handle data and characterize performance.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Bases de Dados Factuais , Eletrocardiografia , Humanos
16.
Sensors (Basel) ; 21(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670498

RESUMO

Currently available jaw motion tracking methods require large accessories mounted on a patient and are utilized in controlled environments, for short-time examinations only. In some cases, especially in the evaluation of bruxism, a non-restrictive, 24-h jaw tracking method is needed. Bruxism oriented, electromyography (EMG)-based devices and sensor-enhanced occlusal splints are able to continuously detect masticatory activity but are uninformative in regards to movement trajectories and kinematics. This study explores a possibility to use a permanent magnet and a 3-axial magnetometer to track the mandible's spatial position in relation to the maxilla. An algorithm for determining the sensor's coordinates from magnetic field values was developed, and it was verified via analytical and finite element modeling and by using a 3D positioning system. Coordinates of the cubic test trajectory (a = 10 mm) were determined with root-mean-square error (RMSE) of 0.328±0.005 mm. Possibility for teeth impact detection by accelerometry was verified. Test on a 6 degrees-of-freedom (DOF), hexapod-based jaw motion simulator moving at natural speed confirmed the system's ability to simultaneously detect jaw position and the impacts of teeth. Small size of MEMS sensors is suitable for a wearable intra-oral system that could allow visualization of continuous jaw movement in 3D models and could enable new research on parafunctional jaw activities.


Assuntos
Acelerometria , Arcada Osseodentária , Movimento , Fenômenos Biomecânicos , Humanos , Fenômenos Magnéticos , Movimento (Física)
17.
Artigo em Inglês | MEDLINE | ID: mdl-33497337

RESUMO

OBJECTIVE: Recent advances in development of low-cost single-channel electroencephalography (EEG) headbands have opened new possibilities for applications in health monitoring and brain-computer interface (BCI) systems. These recorded EEG signals, however, are often contaminated by eye blink artifacts that can yield the fallacious interpretation of the brain activity. This paper proposes an efficient algorithm, VME-DWT, to remove eye blinks in a short segment of the single EEG channel. METHOD: The proposed algorithm: (a) locates eye blink intervals using Variational Mode Extraction (VME) and (b) filters only contaminated EEG interval using an automatic Discrete Wavelet Transform (DWT) algorithm. The performance of VME-DWT is compared with an automatic Variational Mode Decomposition (AVMD) and a DWT-based algorithms, proposed for suppressing eye blinks in a short segment of the single EEG channel. RESULTS: The VME-DWT detects and filters 95% of the eye blinks from the contaminated EEG signals with SNR ranging from -8 to +3 dB. The VME-DWT shows superiority to the AVMD and DWT with the higher mean value of correlation coefficient (0.92 vs. 0.83, 0.58) and lower mean value of RRMSE (0.42 vs. 0.59, 0.87). SIGNIFICANCE: The VME-DWT can be a suitable algorithm for removal of eye blinks in low-cost single-channel EEG systems as it is: (a) computationally-efficient, the contaminated EEG signal is filtered in millisecond time resolution, (b) automatic, no human intervention is required, (c) low-invasive, EEG intervals without contamination remained unaltered, and (d) low-complexity, without need to the artifact reference.


Assuntos
Processamento de Sinais Assistido por Computador , Análise de Ondaletas , Algoritmos , Artefatos , Piscadela , Eletroencefalografia , Humanos
18.
IEEE Trans Biomed Eng ; 68(4): 1273-1281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960759

RESUMO

OBJECTIVE: In the present study, a photoplethysmographic (PPG) waveform analysis for assessing differences in autonomic reactivity to mental stress between patients with Major Depressive Disorder (MDD) and healthy control (HC) subjects is presented. METHODS: PPG recordings of 40 MDD and 40 HC subjects were acquired at basal conditions, during the execution of cognitive tasks, and at the post-task relaxation period. PPG pulses are decomposed into three waves (a main wave and two reflected waves) using a pulse decomposition analysis. Pulse waveform characteristics such as the time delay between the position of the main wave and reflected waves, the percentage of amplitude loss in the reflected waves, and the heart rate (HR) are calculated among others. The intra-subject difference of a feature value between two conditions is used as an index of autonomic reactivity. RESULTS: Statistically significant individual differences from stress to recovery were found for HR and the percentage of amplitude loss in the second reflected wave ( A13) in both HC and MDD group. However, autonomic reactivity indices related to  A13 reached higher values in HC than in MDD subjects (Cohen's [Formula: see text]), implying that the stress response in depressed patients is reduced. A statistically significant ( ) negative correlation ( r=-0.5) between depression severity scores and A13 was found. CONCLUSION: A decreased autonomic reactivity is associated with higher degree of depression. SIGNIFICANCE: Stress response quantification by dynamic changes in PPG waveform morphology can be an aid for the diagnosis and monitoring of depression.


Assuntos
Transtorno Depressivo Maior , Sistema Nervoso Autônomo , Depressão , Transtorno Depressivo Maior/diagnóstico , Frequência Cardíaca , Humanos , Fotopletismografia
19.
J Sleep Res ; 30(2): e13055, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32363754

RESUMO

Total sleep deprivation (TSD) is associated with endothelial dysfunction and a consequent decrease in vascular reactivity and increase in peripheral vascular resistance. These effectors compromise the body's ability to thermoregulate in hot and cold stress conditions. We investigated heat-unacclimated young adult men (26 ± 2 years) to determine whether 36 hr of TSD compared to an 8 or 4-hr sleep condition, would suppress the responses of the autonomic system (body rectal temperature [Tre ], heart rate [HR], root mean square of successive interbeat intervals, physiological strain, blood pressure [BP], circulating blood catecholamines, sweating rate and subjective sensations) to whole-body uncompensable passive heat stress in traditional Finnish sauna heat (Tair  = 80-90°C, rh = 30%). Sauna bathing that induced whole-body hyperthermia had a residual effect on reducing BP in the 8-hr and 4-hr sleep per night conditions according to BP measurements. By contrast, 36 hr of total wakefulness led to an increase in BP. These observed sleep deprivation-dependent differences in BP modifications were not accompanied by changes in the blood plasma epinephrine and norepinephrine concentrations. However, during sauna bathing, an increase in BP following 36 hr of TSD was accompanied by significant decreases in body Tre , HR and physiological strain, together with a diminished sweating rate, enhanced vagus-mediated autonomic control of HR variability, and improved thermal perception by the subjects. Our results suggest the impaired ability of the body to accumulate external heat in the body's core under uncompensable passive heat conditions following 36 hr of TSD, because of the TSD-attenuated autonomic system response to acute heat stress.


Assuntos
Adaptação Fisiológica/fisiologia , Adaptação Psicológica/fisiologia , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Resposta ao Choque Térmico/fisiologia , Privação do Sono/fisiopatologia , Adulto , Humanos , Masculino
20.
IEEE Trans Biomed Eng ; 68(1): 319-329, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746005

RESUMO

OBJECTIVE: The present study proposes a model-based, statistical approach to characterizing episode patterns in paroxysmal atrial fibrillation (AF). Thanks to the rapid advancement of noninvasive monitoring technology, the proposed approach should become increasingly relevant in clinical practice. METHODS: History-dependent point process modeling is employed to characterize AF episode patterns, using a novel alternating, bivariate Hawkes self-exciting model. In addition, a modified version of a recently proposed statistical model to simulate AF progression throughout a lifetime is considered, involving non-Markovian rhythm switching and survival functions. For each model, the maximum likelihood estimator is derived and used to find the model parameters from observed data. RESULTS: Using three databases with a total of 59 long-term ECG recordings, the goodness-of-fit analysis demonstrates that the proposed alternating, bivariate Hawkes model fits SR-to-AF transitions in 40 recordings and AF-to-SR transitions in 51; the corresponding numbers for the AF model with non-Markovian rhythm switching are 40 and 11, respectively. Moreover, the results indicate that the model parameters related to AF episode clustering, i.e., aggregation of temporal AF episodes, provide information complementary to the well-known clinical parameter AF burden. CONCLUSION: Point process modeling provides a detailed characterization of the occurrence pattern of AF episodes that may improve the understanding of arrhythmia progression.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA