Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369604

RESUMO

Collective cell migration is not only important for development and tissue homeostasis but can also promote cancer metastasis. To migrate collectively, cells need to coordinate cellular extensions and retractions, adhesion sites dynamics, and forces generation and transmission. Nevertheless, the regulatory mechanisms coordinating these processes remain elusive. Using A431 carcinoma cells, we identify the kinase MAP4K4 as a central regulator of collective migration. We show that MAP4K4 inactivation blocks the migration of clusters, whereas its overexpression decreases cluster cohesion. MAP4K4 regulates protrusion and retraction dynamics, remodels the actomyosin cytoskeleton, and controls the stability of both cell-cell and cell-substrate adhesion. MAP4K4 promotes focal adhesion disassembly through the phosphorylation of the actin and plasma membrane crosslinker moesin but disassembles adherens junctions through a moesin-independent mechanism. By analyzing traction and intercellular forces, we found that MAP4K4 loss of function leads to a tensional disequilibrium throughout the cell cluster, increasing the traction forces and the tension loading at the cell-cell adhesions. Together, our results indicate that MAP4K4 activity is a key regulator of biomechanical forces at adhesion sites, promoting collective migration.


Assuntos
Junções Célula-Matriz , Citoesqueleto , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fosforilação
2.
Artigo em Inglês | MEDLINE | ID: mdl-28985944

RESUMO

Synthetic amorphous silica nanoparticles (SAS) are among the most widely produced and used nanomaterials, but little is known about their carcinogenic potential. This study aims to evaluate the ability of four different SAS, two precipitated, NM-200 and NM-201, and two pyrogenic, NM-202 and NM-203, to induce the transformation process. For this, we used the recently developed in vitro Bhas 42 cell transformation assay (CTA). The genome of the transgenic Bhas 42 cells contains several copies of the v-Ha-ras gene, making them particularly sensitive to tumor-promoter agents. The Bhas 42 CTA, which includes an initiation assay and a promotion assay, was validated in our laboratory using known soluble carcinogenic substances. Its suitability for particle-type substances was verified by using quartz Min-U-Sil 5 (Min-U-Sil) and diatomaceous earth (DE) microparticles. As expected given their known transforming properties, Min-U-Sil responded positively in the Bhas 42 CTA and DE responded negatively. Transformation assays were performed with SAS at concentrations ranging from 2µg/cm2 to 80µg/cm2. Results showed that all SAS have the capacity to induce transformed foci, interestingly only in the promotion assay, suggesting a mode of action similar to tumor-promoter substances. NM-203 exhibited transforming activity at a lower concentration than the other SAS. In conclusion, this study showed for the first time the transforming potential of different SAS, which act as tumor-promoter substances in the Bhas 42 model of cell transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Células 3T3 BALB , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Testes de Carcinogenicidade , Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Genes ras , Camundongos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA