Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(46): 28522-28529, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36409306

RESUMO

Time-Dependent Density-Functional Theory (TDDFT) and Extended Multi-State Complete Active Space Second-Order Perturbation Theory (XMS-CASPT2) methods, together with augmented correlation-consistent polarizable valence double-ζ (aug-cc-pVDZ) basis sets, were applied to simulate the vibronic and resonance Raman (RR) spectra of a push-pull model system, 4-nitroaniline (pNA) and its anion ([pNA]-), within the Independent Mode Displaced Harmonic Oscillator (IMDHO) model. Both methods predict adequately well the vertical absorption spectra for both species and the well-known charge-transfer (CT; S11(ππ*)) excited state of pNA. Nevertheless, pNA and [pNA]- absorption spectral band intensity and vibronic broadening are better reproduced at the XMS-CASPT2 level. RR spectra were also obtained using both methods, with a good agreement for both methods for pNA, for which the electronic wave functions are best described by a single state configuration. For the anion, for which the excited state presented a multiconfigurational nature, the TDDFT failed to predict the main intensification observed experimentally under resonance conditions. As to the resonance Raman excitation profile for the pNA species, the νS(NO2) vibrational mode carries most of the intensity of the vibronic spectrum, but for [pNA]- the contributions of main vibrational modes are more complex, being governed by different modes in different energies, with ring modes dominating at the maximum, as predicted by the XMS-CASPT2 method.


Assuntos
Modelos Biológicos , Vibração , Teoria da Densidade Funcional , Simulação por Computador , Eletrônica
2.
Front Physiol ; 9: 526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867567

RESUMO

Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c) is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed), Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA