Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 196, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550722

RESUMO

BACKGROUND: Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS: Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS: Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION: A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.


Assuntos
Glucose , Neoplasias Ovarianas , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Células Clonais/metabolismo , Células Clonais/patologia , Glucose/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fosforilação Oxidativa , Ensaios Antitumorais Modelo de Xenoenxerto , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
2.
Br J Cancer ; 127(11): 2034-2042, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175621

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionised treatment of advanced non-small cell lung cancer (aNSCLC), but a proportion of patients had no clinical benefit and even experienced detrimental effects. This study aims to characterise patients experiencing hyperprogression (HPD) and early death (ED) by longitudinal liquid biopsy. METHODS: aNSCLC receiving ICIs were prospectively enrolled. Plasma was collected at baseline (T1) and after 3/4 weeks of treatment, according to the treatment schedule (T2). Cell-free DNA (cfDNA) was quantified and analysed by NGS. cfDNA quantification and variant allele fraction (VAF) of tumour-associated genetic alterations were evaluated for their potential impact on outcome. The genetic alteration with the highest VAF (maxVAF) at baseline was considered as a reference. RESULTS: From March 2017 to August 2019, 171 patients were enrolled. Five cases matched criteria for HPD and 31 ED were recorded; one overlapped. Quantification of cfDNA at T2 and its absolute and relative variation (T2-T1) were significantly associated with the risk of ED (P = 0.012, P = 0.005, P = 0.009). MaxVAF relative change (T2-T1/T1) was significantly associated with the risk of HPD (P = 0.02). After identifying optimal cut-off values, a two-step risk assessment model was proposed. DISCUSSION: Liquid biopsy performed early during treatment has the potential to identify patients at high risk of ED and HPD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biópsia Líquida , Progressão da Doença , Ácidos Nucleicos Livres/genética
3.
Front Oncol ; 10: 607840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520716

RESUMO

BACKGROUND: Molecular profiling of advanced EGFR mutated NSCLC has recently demonstrated the co-existence of multiple genetic alterations. Specifically, co-existing KRAS-mutations in EGFR NSCLCs have been described, despite their prevalence at progression and their role in the response to EGFR tyrosine kinase inhibitors (TKIs) remain marginally explored. Aim of our study was to investigate the prevalence of co-existing KRAS mutations at the time of progressive disease and explore their impact on clinical outcome. MATERIALS AND METHODS: We retrospectively analyzed by digital droplet PCR prevalence of KRAS co-mutations in 106 plasma samples of EGFR mutated NSCLC patients, in progressive disease after EGFR TKI treatment as first-line therapy. RESULTS: KRAS co-mutations (codon 12 and 13) were identified in 3 patients (2.8% of analyzed samples), with low allelic frequency (<0.2%), and had a negative impact on clinical outcome to first-line EGFR TKI. CONCLUSION: Detection of KRAS mutations in cell-free DNA of EGFR mutant NSCLC patients at progression after first or second generation EGFR TKI is a rare event. Due to their low abundance, the negative impact of KRAS mutations on the response to EGFR TKI remains to be confirmed in larger studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA