Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783079

RESUMO

The Next-Generation (NG) IEDB Tools website (https://nextgen-tools.iedb.org) provides users with a redesigned interface to many of the algorithms for epitope prediction and analysis that were originally released on the legacy IEDB Tools website. The initial release focuses on consolidation of all tools related to HLA class I epitopes (MHC binding, elution, immunogenicity, and processing), making all of these predictions accessible from a single application and allowing for their simultaneous execution with minimal user inputs. Additionally, the PEPMatch tool for identifying highly similar epitopes in a set of curated proteomes, as well as a tool for epitope clustering, are available on the site. The NG Tools site allows users to build data pipelines by sending the output of one tool as input for the next. Over the next several years, all pre-existing IEDB Tools, and any newly developed tools, will be integrated into this new site. Here we describe the philosophy behind the redesign and demonstrate the utility and productivity enhancements that are enabled by the new interface.

2.
BMC Bioinformatics ; 24(1): 485, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110863

RESUMO

BACKGROUND: Numerous tools exist for biological sequence comparisons and search. One case of particular interest for immunologists is finding matches for linear peptide T cell epitopes, typically between 8 and 15 residues in length, in a large set of protein sequences. Both to find exact matches or matches that account for residue substitutions. The utility of such tools is critical in applications ranging from identifying conservation across viral epitopes, identifying putative epitope targets for allergens, and finding matches for cancer-associated neoepitopes to examine the role of tolerance in tumor recognition. RESULTS: We defined a set of benchmarks that reflect the different practical applications of short peptide sequence matching. We evaluated a suite of existing methods for speed and recall and developed a new tool, PEPMatch. The tool uses a deterministic k-mer mapping algorithm that preprocesses proteomes before searching, achieving a 50-fold increase in speed over methods such as the Basic Local Alignment Search Tool (BLAST) without compromising recall. PEPMatch's code and benchmark datasets are publicly available. CONCLUSIONS: PEPMatch offers significant speed and recall advantages for peptide sequence matching. While it is of immediate utility for immunologists, the developed benchmarking framework also provides a standard against which future tools can be evaluated for improvements. The tool is available at https://nextgen-tools.iedb.org , and the source code can be found at https://github.com/IEDB/PEPMatch .


Assuntos
Neoplasias , Software , Humanos , Sequência de Aminoácidos , Peptídeos/química , Algoritmos , Epitopos de Linfócito T , Proteoma
3.
Cell Host Microbe ; 31(8): 1404-1416.e4, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490913

RESUMO

The incidence of whooping cough due to Bordetella pertussis (BP) infections has increased recently. It is believed that the shift from whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines may be contributing to this rise. While T cells are key in controlling and preventing disease, nearly all knowledge relates to antigens in aP vaccines. A whole-genome mapping of human BP-specific CD4+ T cell responses was performed in healthy vaccinated adults and revealed unexpected broad reactivity to hundreds of antigens. The overall pattern and magnitude of T cell responses to aP and non-aP vaccine antigens are similar regardless of childhood vaccination, suggesting that asymptomatic infections drive the pattern of T cell reactivity in adults. Lastly, lack of Th1/Th2 polarization to non-aP vaccine antigens suggests these antigens have the potential to counteract aP vaccination Th2 bias. These findings enhance our insights into human T cell responses to BP and identify potential targets for next-generation pertussis vaccines.


Assuntos
Bordetella pertussis , Coqueluche , Adulto , Humanos , Coqueluche/prevenção & controle , Imunização Secundária , Vacina contra Coqueluche , Vacinação
4.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993748

RESUMO

The incidence of whooping cough (pertussis), the respiratory disease caused by Bordetella pertussis (BP) has increased in recent years, and it is suspected that the switch from whole-cell pertussis (wP) to acellular pertussis (aP) vaccines may be a contributing factor to the rise in morbidity. While a growing body of evidence indicates that T cells play a role in the control and prevention of symptomatic disease, nearly all data on human BP-specific T cells is related to the four antigens contained in the aP vaccines, and data detailing T cell responses to additional non-aP antigens, are lacking. Here, we derived a full-genome map of human BP-specific CD4+ T cell responses using a high-throughput ex vivo Activation Induced Marker (AIM) assay, to screen a peptide library spanning over 3000 different BP ORFs. First, our data show that BP specific-CD4+ T cells are associated with a large and previously unrecognized breadth of responses, including hundreds of targets. Notably, fifteen distinct non-aP vaccine antigens were associated with reactivity comparable to that of the aP vaccine antigens. Second, the overall pattern and magnitude of CD4+ T cell reactivity to aP and non-aP vaccine antigens was similar regardless of aP vs wP childhood vaccination history, suggesting that the profile of T cell reactivity in adults is not driven by vaccination, but rather is likely driven by subsequent asymptomatic or sub-clinical infections. Finally, while aP vaccine responses were Th1/Th2 polarized as a function of childhood vaccination, CD4+ T cell responses to non-aP BP antigens vaccine responses were not, suggesting that these antigens could be used to avoid the Th2 bias associated with aP vaccination. Overall, these findings enhance our understanding of human T cell responses against BP and suggest potential targets for designing next-generation pertussis vaccines.

5.
Circ Res ; 131(3): 258-276, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766025

RESUMO

BACKGROUND: CD (cluster of differentiation) 4+ T-cell responses to APOB (apolipoprotein B) are well characterized in atherosclerotic mice and detectable in humans. CD4+ T cells recognize antigenic peptides displayed on highly polymorphic HLA (human leukocyte antigen)-II. Immunogenicity of individual APOB peptides is largely unknown in humans. Only 1 HLA-II-restricted epitope was validated using the DRB1*07:01-APOB3036-3050 tetramer. We hypothesized that human APOB may contain discrete immunodominant CD4+ T-cell epitopes that trigger atherosclerosis-related autoimmune responses in donors with diverse HLA alleles. METHODS: We selected 20 APOB-derived peptides (APOB20) from an in silico screen and experimentally validated binding to the most commonly occurring human HLA-II alleles. We optimized a restimulation-based workflow to evaluate antigenicity of multiple candidate peptides in HLA-typed donors. This included activation-induced marker assay, intracellular cytokine staining, IFNγ (interferon gamma) enzyme-linked immunospot and cytometric bead array. High-throughput sequencing revealed TCR (T-cell receptor) clonalities of APOB-reactive CD4+ T cells. RESULTS: Using stringent positive, negative, and crossover stimulation controls, we confirmed specificity of expansion-based protocols to detect CD4+ T cytokine responses to the APOB20 pool. Ex vivo assessment of AIM+CD4+ T cells revealed a statistically significant autoimmune response to APOB20 but not to a ubiquitously expressed negative control protein, actin. Resolution of CD4+ T responses to the level of individual peptides using IFNγ enzyme-linked immunospot led to the discovery of 6 immunodominant epitopes (APOB6) that triggered robust CD4+ T activation in most donors. APOB6-specific responding CD4+ T cells were enriched in unique expanded TCR clonotypes and preferentially expressed memory markers. Cytometric bead array analysis detected APOB6-induced secretion of both proinflammatory and regulatory cytokines. In clinical samples from patients with angiographically verified coronary artery disease, APOB6 stimulation induced higher activation and memory phenotypes and augmented secretion of proinflammatory cytokines TNF (tumor necrosis factor) and IFNγ, compared with patients with low coronary artery disease. CONCLUSIONS: Using 3 cohorts, each with ≈20 donors, we discovered and validated 6 immunodominant, HLA-II-restricted APOB epitopes. The immune response to these APOB epitopes correlated with coronary artery disease severity.


Assuntos
Doença da Artéria Coronariana , Animais , Apolipoproteínas B/metabolismo , Linfócitos T CD4-Positivos , Doença da Artéria Coronariana/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Humanos , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade , Camundongos , Peptídeos/genética
6.
Isr Med Assoc J ; 24(5): 320-326, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35598057

RESUMO

BACKGROUND: Secondary immune thrombocytopenic purpura (ITP) associated with coronavirus disease 2019 (COVID-19) is a rare but serious complication of the pandemic. Diagnostic criteria include clinical and laboratory findings. Early treatment is often effective, but rare severe bleeding and death can occur. An autoimmune mechanism is likely. OBJECTIVES: To determine a role for molecular mimicry in producing disease. METHODS: Hexapeptide and heptapeptide matches between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and platelet N-glycosylated proteins and other human proteins were assessed. RESULTS: Shared viral and platelet glycoprotein peptides were found. Copy frequency of these peptides in the human proteome was low for many of the candidate molecular mimics. CONCLUSIONS: The data support a contribution of molecular mimicry in COVID-19 ITP autoimmunity and offer avenues for in vitro diagnostic assay development. The continuation of the pandemic necessitates additional understanding of COVID-19 ITP as well as studies on diagnosis and mitigation.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , COVID-19/complicações , Biologia Computacional , Humanos , Pandemias , Púrpura Trombocitopênica Idiopática/terapia , SARS-CoV-2
7.
EBioMedicine ; 75: 103807, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34998242

RESUMO

BACKGROUND: COVID-19 mRNA vaccines have proven to be highly safe and effective. Myocarditis is an adverse event associated with mRNA vaccination, especially in young male subjects. These events are rare and, in the majority of cases, resolve quickly. As myocarditis can be driven by autoimmune responses, we wanted to determine if the SARS-CoV-2 spike protein antigen encoded in the mRNA COVID vaccines had potential cross-reactivity with auto-antigens previously associated with myocarditis. METHODS: We performed a sequence identity comparison between SARS-CoV-2 spike protein-derived peptides and myocarditis-associated antigens. We also performed a structural analysis of these antigens and the SARS-CoV-2 spike protein to identify potential discontinuous 3-D epitope similarities. FINDINGS: We found no significant enrichment in the frequency of spike-derived peptides similar to myocarditis-associated antigens as compared to several controls. INTERPRETATION: Our results do not support the notion that increased occurrence of myocarditis after SARS-CoV-2-spike vaccination is mediated by a cross-reactive adaptive immune response.


Assuntos
Antígenos/genética , COVID-19/genética , Epitopos/genética , Miocardite/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Imunidade Adaptativa , Antígenos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Reações Cruzadas , Epitopos/imunologia , Humanos , Miocardite/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32473127

RESUMO

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito T , Pneumonia Viral/imunologia , Betacoronavirus/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Convalescença , Infecções por Coronavirus/sangue , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA