Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Inflammation ; 47(2): 822-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148453

RESUMO

Genomic instability is a key driving force for the development and progression of many age-related neurodegenerative diseases and central nervous system (CNS) cancers. Recently, the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), has been shown to detect and respond to self-DNA accumulation resulting from DNA damaging insults in peripheral cell types. cGAS has been shown to be important in the responses of microglia to DNA viruses and amyloid beta, and we have reported that it underlies the responses of human microglia to exogenous DNA. However, the role of this cytosolic sensor in the detection of self-DNA by glia is poorly understood and its ability to mediate the cellular responses of human microglia to genotoxic DNA damage has not been established. Here, we describe the ability of ionizing radiation and oxidative stress to elicit genomic DNA damage in human microglial cells and to stimulate the production of key inflammatory mediators by these cells in an NF-kB dependent manner. Importantly, we have utilized CRISPR/Cas9 and siRNA-mediated knockdown approaches and a pharmacological inhibitor of the cGAS adaptor protein stimulator of interferon genes (STING) to demonstrate that the cGAS-STING pathway plays a critical role in the generation of these microglial immune responses to such genotoxic insults. Together, these studies support the notion that cGAS mediates the detection of cytosolic self-DNA by microglia, providing a potential mechanism linking genomic instability to the development of CNS cancers and neurodegenerative disorders.


Assuntos
Dano ao DNA , Proteínas de Membrana , Microglia , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Microglia/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , NF-kappa B/metabolismo
2.
3.
Infect Immun ; 91(4): e0001423, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36880752

RESUMO

Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus/metabolismo , Neutrófilos/metabolismo , Quimiocinas/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Osteoblastos , Interleucina-8/metabolismo , Infecções Estafilocócicas/microbiologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocina CCL3/metabolismo
4.
Front Immunol ; 14: 1130172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999037

RESUMO

Genomic instability is a key driving force for the development and progression of many neurodegenerative diseases and central nervous system (CNS) cancers. The initiation of DNA damage responses is a critical step in maintaining genomic integrity and preventing such diseases. However, the absence of these responses or their inability to repair genomic or mitochondrial DNA damage resulting from insults, including ionizing radiation or oxidative stress, can lead to an accumulation of self-DNA in the cytoplasm. Resident CNS cells, such as astrocytes and microglia, are known to produce critical immune mediators following CNS infection due to the recognition of pathogen and damage-associated molecular patterns by specialized pattern recognition receptors (PRRs). Recently, multiple intracellular PRRs, including cyclic GMP-AMP synthase, interferon gamma-inducible 16, absent in melanoma 2, and Z-DNA binding protein, have been identified as cytosolic DNA sensors and to play critical roles in glial immune responses to infectious agents. Intriguingly, these nucleic acid sensors have recently been shown to recognize endogenous DNA and trigger immune responses in peripheral cell types. In the present review, we discuss the available evidence that cytosolic DNA sensors are expressed by resident CNS cells and can mediate their responses to the presence of self-DNA. Furthermore, we discuss the potential for glial DNA sensor-mediated responses to provide protection against tumorigenesis versus the initiation of potentially detrimental neuroinflammation that could initiate or foster the development of neurodegenerative disorders. Determining the mechanisms that underlie the detection of cytosolic DNA by glia and the relative role of each pathway in the context of specific CNS disorders and their stages may prove pivotal in our understanding of the pathogenesis of such conditions and might be leveraged to develop new treatment modalities.


Assuntos
Neuroglia , Ácidos Nucleicos , Neuroglia/metabolismo , DNA/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Microglia/metabolismo
5.
Front Immunol ; 14: 1053550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798121

RESUMO

The immune system has evolved to defend organisms against exogenous threats such as viruses, bacteria, fungi, and parasites by distinguishing between "self" and "non-self". In addition, it guards us against other diseases, such as cancer, by detecting and responding to transformed and senescent cells. However, for survival and propagation, the altered cells and invading pathogens often employ a wide range of mechanisms to avoid, inhibit, or manipulate the immunorecognition. As such, the development of new modes of therapeutic intervention to augment protective and prevent harmful immune responses is desirable. Nucleic acids are biopolymers essential for all forms of life and, therefore, delineating the complex defensive mechanisms developed against non-self nucleic acids can offer an exciting avenue for future biomedicine. Nucleic acid technologies have already established numerous approaches in therapy and biotechnology; recently, rationally designed nucleic acids nanoparticles (NANPs) with regulated physiochemical properties and biological activities has expanded our repertoire of therapeutic options. When compared to conventional therapeutic nucleic acids (TNAs), NANP technologies can be rendered more beneficial for synchronized delivery of multiple TNAs with defined stabilities, immunological profiles, and therapeutic functions. This review highlights several recent advances and possible future directions of TNA and NANP technologies that are under development for controlled immunomodulation.


Assuntos
Nanopartículas , Neoplasias , Ácidos Nucleicos , Humanos , Imunomodulação , Neoplasias/tratamento farmacológico , Imunidade , Nanopartículas/uso terapêutico , Nanopartículas/química
6.
Inflammation ; 46(1): 256-269, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36040535

RESUMO

Staphylococcus aureus infections of bone tissue are associated with inflammatory bone loss. Resident bone cells, including osteoblasts and osteoclasts, can perceive S. aureus and produce an array of inflammatory and pro-osteoclastogenic mediators, thereby contributing to such damage. The neuropeptide substance P (SP) has been shown to exacerbate microbially induced inflammation at sites such as the gut and the brain and has previously been shown to affect bone cell differentiation and activity. Here we demonstrate that the interaction of SP with its high affinity receptor, neurokinin-1 receptor (NK-1R), expressed on murine osteoblasts and osteoclasts, augments the inflammatory responses of these cells to S. aureus challenge. Additionally, SP alters the production of pro- and anti-osteoclastogenic factors by bacterially challenged bone cells and their proteolytic functions in a manner that would be anticipated to exacerbate inflammatory bone loss at sites of infection. Furthermore, we have demonstrated that the clinically approved NK-1R antagonist, aprepitant, attenuates local inflammatory and pro-osteoclastogenic mediator expression in an in vivo mouse model of post-traumatic staphylococcal osteomyelitis. Taken together, these results indicate that SP/NK-1R interactions could play a significant role in the initiation and/or progression of damaging inflammation in S. aureus bone infections and suggest that the repurposing of currently approved NK-1R antagonists might represent a promising new adjunct therapy for such conditions.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Substância P/farmacologia , Substância P/metabolismo , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Inflamação/metabolismo , Osteomielite/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo
7.
Front Microbiol ; 13: 1066237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532419

RESUMO

Introduction: The refractory and recurrent nature of chronic staphylococcal osteomyelitis may be due, at least in part, to the ability of Staphylococcus aureus to invade and persist within bone-forming osteoblasts. However, osteoblasts are now recognized to respond to S. aureus infection and produce numerous immune mediators and bone regulatory factors that can shape the host response. Type I interferons (IFNs) are best known for their antiviral effects, but it is becoming apparent that they impact host susceptibility to a wide range of pathogens including S. aureus. Methods: Here, we have assessed the local expression of IFN-ß by specific capture ELISA in an established in vivo mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis, specific capture ELISAs, and/or immunoblot analyses, were then used to assess the expression of type I IFNs and select IFN stimulated genes (ISGs) in S. aureus infected primary murine osteoblasts. The effect of IFN-ß on intracellular S. aureus burden was assessed in vitro following recombinant cytokine treatment by serial colony counts of liberated bacteria. Results: We report the presence of markedly elevated IFN-ß levels in infected bone tissue in a mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis of S. aureus infected osteoblasts showed enrichment of genes associated with type I IFN signaling and ISGs, and elevated expression of mRNA encoding IFN-ß and ISG products. IFN-ß production was confirmed with the demonstration that S. aureus induces its rapid and robust release by osteoblasts in a dose-dependent manner. Furthermore, we showed increased protein expression of the ISG products IFIT1 and IFIT3 by infected osteoblasts and demonstrate that this occurs secondary to the release of IFN-ß by these cells. Finally, we have determined that exposure of S. aureus-infected osteoblasts to IFN-ß markedly reduces the number of viable bacteria harbored by these cells. Discussion: Together, these findings indicate an ability of osteoblasts to respond to bacteria by producing IFN-ß that can act in an autocrine and/or paracrine manner to elicit ISG expression and mitigate S. aureus infection.

8.
J Neuroinflammation ; 19(1): 109, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549723

RESUMO

BACKGROUND: The mechanisms by which glia respond to viral central nervous system (CNS) pathogens are now becoming apparent with the demonstration that microglia and astrocytes express an array of pattern recognition receptors that include intracellular RNA and DNA sensors. We have previously demonstrated that glia express Z-DNA binding protein 1 (ZBP1) and showed that this cytosolic nucleic acid sensor contributes to the inflammatory/neurotoxic responses of these cells to herpes simplex virus-1 (HSV-1). However, the relative contribution made by ZBP1- to HSV-1-mediated cell death in glia has not been determined. METHODS: We have investigated the relative contribution made by ZBP1- to HSV-1-mediated cell death in primary astrocytes derived from mice genetically deficient in this sensor. We have used capture ELISAs and immunoblot analysis to assess inflammatory cytokine production and ZBP1 and phosphorylated mixed lineage kinase domain-like protein (MLKL) expression levels, respectively, following HSV-1 challenge. Furthermore, we have used a commercially available cell viability assay to determine the proportion and rate of cell death in cells following infection with laboratory and neuroinvasive clinical strains of HSV-1, and pharmacological inhibitors of necroptotic and apoptotic pathway components to assess the relative role of each. RESULTS: We show that the loss of ZBP1 in astrocytes results in an increase in the number of viral particles released following HSV-1 infection. Importantly, we have confirmed that HSV-1 induces necroptosis in astrocytes and have established the ability of ZBP1 to mediate this cell death pathway. Interestingly, while ZBP1 is best known for its role in necroptotic signaling, our findings indicate that this sensor can also contribute to virally induced apoptosis in these glia. CONCLUSIONS: Our findings indicate that ZBP1 serves as a restriction factor for HSV-1 infection and is associated with the induction of both necroptotic and apoptotic cell death pathways in primary murine astrocytes. While it remains to be seen whether ZBP1-mediated activation of cell death in astrocytes contributes significantly to host protection or, rather, exacerbates HSV-1 encephalitis pathology, the identification of such a role in resident CNS cells may represent a novel target for therapeutic intervention to reduce HSV encephalitis-associated morbidity and mortality.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Animais , Apoptose , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA
9.
Biomedicines ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672573

RESUMO

Lung cancer maintains a relatively small survival rate (~19%) over a 5-year period and up to 80-85% of all lung cancer diagnoses are Non-Small Cell Lung Cancer (NSCLC). To determine whether metformin reduces non-small cell lung cancer (NSCLC) LL/2 cell growth, cells were grown in vitro and treated with metformin for 48 h. qPCR was used to assess genes related to cell cycle regulation and pro-apoptotic markers, namely Cyclin D, CDK4, p27, p21, and HES1. Treatment with 10 mM metformin significantly reduced HES1 expression (p = 0.011). Furthermore, 10 mM metformin treatment significantly decreased REDD1 (p = 0.0082) and increased p-mTOR Ser2448 (p = 0.003) protein expression. Control cells showed significant reductions in phosphorylated p53 protein expression (p = 0.0367), whereas metformin treated cells exhibited reduced total p53 protein expression (p = 0.0078). There were no significant reductions in AMPK, PKB/AKT, or STAT3. In addition, NSCLC cells were treated for 48 h. with 10 mM metformin, 4 µM gamma-secretase inhibitor (GSI), or the combination of metformin (10 mM) and GSI (4 µM) to determine the contribution of respective signaling pathways. Metformin treatment significantly reduced total nucleus expression of the proliferation maker Ki-67 with an above 65% reduction in Ki-67 expression between control and metformin-treated cells (p = 0.0021). GSI (4 µM) treatment significantly reduced Ki-67 expression by ~20% over 48 h (p = 0.0028). Combination treatment (10 mM metformin and 4 µM GSI) significantly reduced Ki-67 expression by more than 50% over 48 h (p = 0.0245). As such, direct administration of metformin (10 mM for 48 h) proved to be an effective pharmaceutical agent in reducing the proliferation of cultured non-small cell cancer cells. These intriguing in vitro results, therefore, support the further study of metformin in appropriate in vivo models as an anti-oncogenic agent and/or an adjunctive therapy.

10.
Biomedicines ; 9(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34829914

RESUMO

Non-small-cell lung cancer (NSCLC) makes up 80-85% of lung cancer diagnoses. Lung cancer patients undergo surgical procedures, chemotherapy, and/or radiation. Chemotherapy and radiation can induce deleterious systemic side effects, particularly within skeletal muscle. To determine whether metformin reduces NSCLC tumor burden while maintaining skeletal muscle health, C57BL/6J mice were injected with Lewis lung cancer (LL/2), containing a bioluminescent reporter for in vivo tracking, into the left lung. Control and metformin (250 mg/kg) groups received treatments twice weekly. Skeletal muscle was analyzed for changes in genes and proteins related to inflammation, muscle mass, and metabolism. The LL/2 model effectively mimics lung cancer growth and tumor burden. The in vivo data indicate that metformin as administered was not associated with significant improvement in tumor burden in this immunocompetent NSCLC model. Additionally, metformin was not associated with significant changes in key tumor cell division and inflammation markers, or improved skeletal muscle health. Metformin treatment, while exhibiting anti-neoplastic characteristics in many cancers, appears not to be an appropriate monotherapy for NSCLC tumor growth in vivo. Future studies should pursue co-treatment modalities, with metformin as a potentially supportive drug rather than a monotherapy to mitigate cancer progression.

11.
Nucleic Acids Res ; 48(20): 11785-11798, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33091133

RESUMO

Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences. We show that replacing RNA strands with either DNA or chemical analogs increases the enzymatic and thermodynamic stability of NANPs. Furthermore, we have found that such composition changes affect delivery efficiency and determine subcellular localization, effects that could permit the targeted delivery of NANP-based therapeutics and diagnostics. Importantly, we have determined that altering NANP composition can dictate the degree and mechanisms by which cell immune responses are initiated. While RNA NANPs trigger both TLR7 and RIG-I mediated cytokine and interferon production, DNA NANPs stimulate minimal immune activation. Importantly, incorporation of 2'F modifications abrogates RNA NANP activation of TLR7 but permits RIG-I dependent immune responses. Furthermore, 2'F modifications of DNA NANPs significantly enhances RIG-I mediated production of both proinflammatory cytokines and interferons. Collectively this indicates that off-target effects may be reduced and/or desirable immune responses evoked based upon NANPs modifications. Together, our studies show that NANP composition provides a simple way of controlling the immunostimulatory potential, and physicochemical and delivery characteristics, of such platforms.


Assuntos
DNA/química , Nanopartículas/química , RNA/química , Transporte Biológico , Linhagem Celular , Citocinas/biossíntese , DNA/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Nanopartículas/metabolismo , Oligonucleotídeos/química , RNA/metabolismo , Termodinâmica
12.
Front Cell Infect Microbiol ; 10: 576263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042875

RESUMO

Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.


Assuntos
Astrócitos , Microglia , Sistema Nervoso Central , DNA , Humanos , Neuroglia
13.
J Neurovirol ; 26(4): 544-555, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32488842

RESUMO

Glia play a key role in immunosurveillance within the central nervous system (CNS) and can recognize a wide range of pathogen-associated molecular patterns (PAMPS) via members of multiple pattern recognition receptor (PRR) families. Of these, the expression of cytosolic/nuclear RNA and DNA sensors by glial cells is of particular interest as their ability to interact with intracellular nucleic acids suggests a critical role in the detection of viral pathogens. The recently discovered DNA sensors cyclic GMP-AMP synthase (cGAS) and interferon gamma-inducible protein 16 (IFI16) have been reported to be important for the recognition of DNA pathogens such as herpes simplex virus-1 (HSV-1) in peripheral human cell types, and we have recently demonstrated that human glia express cGAS and its downstream adaptor molecule stimulator of interferon genes (STING). Here, we have demonstrated that human microglial cells functionally express cGAS and exhibit robust constitutive IFI16 expression. While cGAS serves as a significant component in IRF3 activation and IFN-ß production by human microglial cells in response to foreign intracellular DNA, IFI16 is not required for such responses. Surprisingly, neither of these sensors mediate effective antiviral responses to HSV-1 in microglia, and this may be due, at least in part, to viral suppression of cGAS and/or IFI16 expression. As such, this ability may represent an important HSV immune evasion strategy in glial cells, and approaches that mitigate such suppression might represent a novel strategy to limit HSV-1-associated neuropathology.


Assuntos
DNA Viral/genética , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno/genética , Microglia/virologia , Proteínas Nucleares/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Astrócitos/imunologia , Astrócitos/virologia , Linhagem Celular Transformada , DNA Viral/imunologia , Regulação da Expressão Gênica , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Microglia/imunologia , Proteínas Nucleares/imunologia , Nucleotidiltransferases/imunologia , Fosfoproteínas/imunologia , Cultura Primária de Células , Transdução de Sinais
14.
J Neuroinflammation ; 17(1): 139, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357908

RESUMO

BACKGROUND: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. METHODS: In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. RESULTS: We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. CONCLUSIONS: The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.


Assuntos
DNA Bacteriano/imunologia , Microglia/imunologia , RNA Bacteriano/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores do Ácido Retinoico/imunologia , Animais , Células Cultivadas , Humanos , Fator Regulador 3 de Interferon/biossíntese , Interferons/biossíntese , Camundongos , Camundongos Endogâmicos C57BL
15.
J Biomed Mater Res A ; 108(11): 2162-2174, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319213

RESUMO

Silicon carbide (SiC) is an inert material with excellent biocompatibility properties. A major issue that limits its use as a medical device is the difficult processing technique that requires hot pressing at a temperature (>2,000o C) and pressure (1,000-2,000 atm). In the present study, we developed a protocol to synthesize a porous SiC scaffold by pressing the powder at 50 MPa and heating at 900o C/2 hr. The surface of SiC was chemically modified by NaOH to facilitate sintering and induce bioactivity. Porous discs with 51.51 ± 3.17% porosity and interconnected pores in the size range from 1 to 1,000 µm were prepared using 40% PEG. The average compressive strength and Young's modulus of the scaffolds were 1.94 ± 0.70 and 169.2 ± 0.08 MPa, respectively. FTIR analysis confirmed the formation of biomimetic hydroxyapatite layer after 2 hr of immersion in simulated body fluid. The Ca/P ratio was dependent on the concentration of the silanol groups created on the material surface. Increasing the atomic % of silicon on the SiC surface from 33.27 ± 9.53% to 45.13 ± 4.74% resulted in a 76% increase in the osteocalcin expression by MC3T3-E1 cells seeded on the material after 7 days. The cells colonized the entire thickness of the template and filled the pores with mineralized extracellular matrix after 14 days. Taken all together, the porous SiC scaffolds can serve as a bone graft for tissue reconstruction and cell delivery in trauma surgery.


Assuntos
Substitutos Ósseos/química , Compostos Inorgânicos de Carbono/química , Compostos de Silício/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Durapatita/química , Módulo de Elasticidade , Camundongos , Porosidade , Engenharia Tecidual
16.
Nanomedicine ; 23: 102094, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669854

RESUMO

Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.


Assuntos
Adjuvantes Imunológicos , Inativação Gênica , Nanopartículas/química , Ácidos Nucleicos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/farmacologia
17.
Neurosci Lett ; 708: 134334, 2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238130

RESUMO

Glia are key regulators of inflammatory responses within the central nervous system (CNS) following infection or trauma. We have previously demonstrated the ability of activated astrocytes to rapidly produce pro-inflammatory mediators followed by a transition to an anti-inflammatory cytokine production profile that includes the immunosuppressive cytokine interleukin (IL)-10 and the closely related cytokines IL-19 and IL-24. IL-20, another member of the IL-10 family, is known to modulate immune cell activity in the periphery and we have previously demonstrated that astrocytes constitutively express the cognate receptors for this cytokine. However, the ability of glia to produce IL-20 remains unclear and the effects of this pleiotropic cytokine on glial immune functions have not been investigated. In this study, we report that primary murine and human astrocytes are not an appreciable source of IL-20 following challenge with disparate bacterial species or their components. Importantly, we have determined that astrocyte are responsive to the immunomodulatory actions of this cytokine by showing that recombinant IL-20 administration upregulates microbial pattern recognition receptor expression and induces release of the inflammatory mediator IL-6 by these cells. Taken together, these data suggest that IL-20 acts in a dissimilar manner to other IL-10 family members to augment the inflammatory responses of astrocytes.


Assuntos
Astrócitos/metabolismo , Interleucinas/metabolismo , Animais , Astrócitos/microbiologia , Células Cultivadas , Humanos , Imunomodulação , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucinas/farmacologia , Camundongos Endogâmicos C57BL , Neisseria meningitidis/fisiologia , Neuroglia/metabolismo , Neuroglia/microbiologia , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/fisiologia , Streptococcus pneumoniae/fisiologia , Receptores Toll-Like/metabolismo
18.
J Neuroinflammation ; 16(1): 55, 2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30825881

RESUMO

BACKGROUND: Glia are key regulators of inflammatory responses within the central nervous system (CNS) following infection or trauma. We have previously demonstrated the ability of activated glia to rapidly produce pro-inflammatory mediators followed by a transition to an anti-inflammatory cytokine production profile that includes the immunosuppressive cytokine interleukin (IL)-10 and the closely related cytokine IL-19. IL-24, another member of the IL-10 family, has been studied in a number of inflammatory conditions in the periphery and is known to modulate immune cell activity. However, the ability of glia to produce IL-24 remains unclear and the effects of this pleiotropic cytokine on glial immune functions have not been investigated. METHODS: In this study, we have assessed whether primary murine glia produce IL-24 following stimulation and evaluated the effect of this cytokine on the immune responses of such cells. We have utilized RT-PCR and immunoblot analyses to assess the expression of IL-24 and its cognate receptors by astrocytes following challenge with bacteria or their components. Furthermore, we have determined the effect of recombinant IL-24 on astrocyte immune signaling and responses to clinically relevant bacteria using RT-PCR and specific capture ELISAs. RESULTS: We demonstrate that astrocytes express IL-24 mRNA and release detectable amounts of this cytokine protein in a delayed manner following bacterial challenge. In addition, we have determined that glia constitutively express the cognate receptors for IL-24 and show that such expression can be increased in astrocytes following activation. Importantly, our results indicate that IL-24 exerts an immunosuppressive effect on astrocytes by elevating suppressor of cytokine signaling 3 expression and limiting IL-6 production following challenge. Furthermore, we have demonstrated that IL-24 can also augment the release of IL-10 by bacterially challenged astrocytes and can induce the expression of the potentially neuroprotective mediators, glutamate transporter 1, and cyclooxygenase 2. CONCLUSIONS: The expression of IL-24 and its cognate receptors by astrocytes following bacterial challenge, and the ability of this cytokine to limit inflammatory responses while promoting the expression of immunosuppressive and/or neuroprotective mediators, raises the intriguing possibility that IL-24 functions to regulate or resolve CNS inflammation following bacterial infection in order to limit neuronal damage.


Assuntos
Astrócitos/imunologia , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Animais , Astrócitos/metabolismo , Infecções Bacterianas/imunologia , Citocinas/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Cell Neurosci ; 12: 458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542269

RESUMO

Resident cells of the central nervous system (CNS) play an important role in detecting insults and initiating protective or sometimes detrimental host immunity. At peripheral sites, immune responses follow a biphasic course with the rapid, but transient, production of inflammatory mediators giving way to the delayed release of factors that promote resolution and repair. Within the CNS, it is well known that glial cells contribute to the onset and progression of neuroinflammation, but it is only now becoming apparent that microglia and astrocytes also play an important role in producing and responding to immunosuppressive factors that serve to limit the detrimental effects of such responses. Interleukin-10 (IL-10) is generally considered to be the quintessential immunosuppressive cytokine, and its ability to resolve inflammation and promote wound repair at peripheral sites is well documented. In the present review article, we discuss the evidence for the production of IL-10 by glia, and describe the ability of CNS cells, including microglia and astrocytes, to respond to this suppressive factor. Furthermore, we review the literature for the expression of other members of the IL-10 cytokine family, IL-19, IL-20, IL-22 and IL-24, within the brain, and discuss the evidence of a role for these poorly understood cytokines in the regulation of infectious and sterile neuroinflammation. In concert, the available data indicate that glia can produce IL-10 and the related cytokines IL-19 and IL-24 in a delayed manner, and these cytokines can limit glial inflammatory responses and/or provide protection against CNS insult. However, the roles of other IL-10 family members within the CNS remain unclear, with IL-20 appearing to act as a pro-inflammatory factor, while IL-22 may play a protective role in some instances and a detrimental role in others, perhaps reflecting the pleiotropic nature of this cytokine family. What is clear is that our current understanding of the role of IL-10 and related cytokines within the CNS is limited at best, and further research is required to define the actions of this understudied family in inflammatory brain disorders.

20.
Front Neurol ; 9: 797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319529

RESUMO

Alzheimer's disease (AD) is an irreversible neurodegenerative illness and the exact etiology of the disease remains unknown. It is characterized by long preclinical and prodromal phases with pathological features including an accumulation of amyloid-beta (Aß) peptides into extracellular Aß plaques in the brain parenchyma and the formation of intracellular neurofibrillary tangles (NFTs) within neurons as a result of abnormal phosphorylation of microtubule-associated tau proteins. In addition, prominent activation of innate immune cells is also observed and/or followed by marked neuroinflammation. While such neuroinflammatory responses may function in a neuroprotective manner by clearing neurotoxic factors, they can also be neurotoxic by contributing to neurodegeneration via elevated levels of proinflammatory mediators and oxidative stress, and altered levels of neurotransmitters, that underlie pathological symptoms including synaptic and cognitive impairment, neuronal death, reduced memory, and neocortex and hippocampus malfunctions. Glial cells, particularly activated microglia and reactive astrocytes, appear to play critical and interactive roles in such dichotomous responses. Accumulating evidences clearly point to their critical involvement in the prevention, initiation, and progression, of neurodegenerative diseases, including AD. Here, we review recent findings on the roles of astrocyte-microglial interactions in neurodegeneration in the context of AD and discuss newly developed in vitro and in vivo experimental models that will enable more detailed analysis of glial interplay. An increased understanding of the roles of glia and the development of new exploratory tools are likely to be crucial for the development of new interventions for early stage AD prevention and cures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA