Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594596

RESUMO

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.

2.
J Neurosci Methods ; 401: 110003, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918446

RESUMO

Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.


Assuntos
Projetos de Pesquisa , Caracteres Sexuais , Animais , Masculino , Feminino , Reprodutibilidade dos Testes , Fatores Sexuais , Tamanho da Amostra
3.
Neuropsychopharmacology ; 48(6): 852-856, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928352

RESUMO

Research regarding the mental health of the Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual, 2 Spirit (LGBTQIA2S+) community has been historically biased by individual and structural homophobia, biphobia, and transphobia, resulting in research that does not represent the best quality science. Furthermore, much of this research does not serve the best interests or priorities of LGBTQIA2S + communities, despite significant mental health disparities and great need for quality mental health research and treatments in these populations. Here, we will highlight how bias has resulted in missed opportunities for advancing understanding of mental health within LGBTQIA2S + communities. We cite up-to-date research on mental health disparities facing the LGBTQIA2S + community and targeted treatment strategies, as well as guidance from health care professionals. Importantly, research is discussed from both preclinical and clinical perspectives, providing common language and research priorities from a translational perspective. Given the rising tide of anti-transgender sentiment among certain political factions, we further emphasize and discuss the impact of historical and present day ciscentrism and structural transphobia in transgender mental health research, from both clinical and translational perspectives, with suggestions for future directions to improve the quality of this field. Finally, we address current best practices for treatment of mental health issues in this community. This approach provides an opportunity to dispel myths regarding the LGBTQIA2S + community as well as inform the scientific community of best practices to work with this community in an equitable manner. Thus, our approach ties preclinical and clinical research within the LGBTQIA2S + community.


Assuntos
Minorias Sexuais e de Gênero , Pessoas Transgênero , Transexualidade , Feminino , Humanos , Pessoas Transgênero/psicologia , Comportamento Sexual , Identidade de Gênero
4.
Psychoneuroendocrinology ; : 106048, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36739212
5.
Mol Psychiatry ; 27(12): 4829-4842, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056174

RESUMO

Previous studies have underscored the importance of breastfeeding and parental care on offspring development and behavior. However, their contribution as dynamic variables in animal models of early life stress are often overlooked. In the present study, we investigated how lipopolysaccharide (LPS)-induced maternal immune activation (MIA) on postnatal day (P)10 affects maternal care, milk, and offspring development. MIA was associated with elevated milk corticosterone concentrations on P10, which recovered by P11. In contrast, both milk triglyceride and percent creamatocrit values demonstrated a prolonged decrease following inflammatory challenge. Adolescent MIA offspring were heavier, which is often suggestive of poor early life nutrition. While MIA did not decrease maternal care quality, there was a significant compensatory increase in maternal licking and grooming the day following inflammatory challenge. However, this did not protect against disrupted neonatal huddling or later-life alterations in sensorimotor gating, conditioned fear, mechanical allodynia, or reductions in hippocampal parvalbumin expression in MIA offspring. MIA-associated changes in brain and behavior were likely driven by differences in milk nutritional values and not by direct exposure to LPS or inflammatory molecules as neither LPS binding protein nor interleukin-6 milk levels differed between groups. These findings reflected comparable microbiome and transcriptomic patterns at the genome-wide level. Animal models of early life stress can impact both parents and their offspring. One mechanism that can mediate the effects of such stressors is changes to maternal lactation quality which our data show can confer multifaceted and compounding effects on offspring physiology and behavior.


Assuntos
Leite , Efeitos Tardios da Exposição Pré-Natal , Ratos , Animais , Feminino , Masculino , Humanos , Lipopolissacarídeos/farmacologia , Comportamento Animal/fisiologia , Lactação , Percepção
6.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35995560

RESUMO

Breastfeeding confers robust benefits to offspring development in terms of growth, immunity, and neurophysiology. Similarly, improving environmental complexity, i.e., environmental enrichment (EE), contributes developmental advantages to both humans and laboratory animal models. However, the impact of environmental context on maternal care and milk quality has not been thoroughly evaluated, nor are the biological underpinnings of EE on offspring development understood. Here, Sprague Dawley rats were housed and bred in either EE or standard-housed (SD) conditions. EE dams gave birth to a larger number of pups, and litters were standardized and cross-fostered across groups on postnatal day (P)1. Maternal milk samples were then collected on P1 (transitional milk phase) and P10 (mature milk phase) for analysis. While EE dams spent less time nursing, postnatal enrichment exposure was associated with heavier offspring bodyweights. Milk from EE mothers had increased triglyceride levels, a greater microbiome diversity, and a significantly higher abundance of bacterial families related to bodyweight and energy metabolism. These differences reflected comparable transcriptomic changes at the genome-wide level. In addition to changes in lactational quality, we observed elevated levels of cannabinoid receptor 1 in the hypothalamus of EE dams, and sex-dependent and time-dependent effects of EE on offspring social behavior. Together, these results underscore the multidimensional impact of the combined neonatal and maternal environments on offspring development and maternal health. Moreover, they highlight potential deficiencies in the use of "gold standard" laboratory housing in the attempt to design translationally relevant animal models in biomedical research.


Assuntos
Leite , Comportamento Social , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Lactação , Comportamento Materno/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Neurobiol Stress ; 20: 100475, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36032404

RESUMO

Stress induces allostatic responses, whose limits depend on genetic background and the nature of the challenges. Allostatic load reflects the cumulation of these reponses over the course of life. Acute stress is usually associated with adaptive responses, although, depending on the intensity of the stress and individual differences , some may experience maladaptive coping that persists through life and may influence subsequent responses to stressful events, as is the case of post-traumatic stress disorder. We investigated the behavioral traits and epigenetic signatures in a double-hit mouse model of acute stress in which heterotypic stressors (acute swim stress and acute restraint stress) were applied within a 7-day interval period. The ventral hippocampus was isolated to study the footprints of chromatin accessibility driven by exposure to double-hit stress. Using ATAC sequencing to determine regions of open chromatin, we showed that depending on the number of acute stressors, several gene sets related to development, immune function, cell starvation, translation, the cytoskeleton, and DNA modification were reprogrammed in both males and females. Chromatin accessibility for transcription factor binding sites showed that stress altered the accessibility for androgen, glucocorticoid, and mineralocorticoid receptor binding sites (AREs/GREs) at the genome-wide level, with double-hit stressed mice displaying a profile unique from either single hit of acute stress. The investigation of AREs/GREs adjacent to gene coding regions revealed several stress-related genes, including Fkbp5, Zbtb16, and Ddc, whose chromatin accessibility was affected by prior exposure to stress. These data demonstrate that acute stress is not truly acute because it induces allostatic signatures that persist in the epigenome and may manifest when a second challenge hits later in life.

8.
Transl Psychiatry ; 12(1): 109, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296634

RESUMO

The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.


Assuntos
Corticosterona , Sistema Hipotálamo-Hipofisário , Animais , Corticosterona/farmacologia , Epigênese Genética , Feminino , Genótipo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
Neuropsychopharmacology ; 47(5): 987-999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848858

RESUMO

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.


Assuntos
Corticosterona , Estresse Psicológico , Animais , Ansiedade/genética , Corticosterona/farmacologia , Suscetibilidade a Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética
10.
Nat Commun ; 12(1): 463, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469025

RESUMO

Splicing varies across brain regions, but the single-cell resolution of regional variation is unclear. We present a single-cell investigation of differential isoform expression (DIE) between brain regions using single-cell long-read sequencing in mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Isoform tests for DIE show better performance than exon tests. We detect hundreds of DIE events traceable to cell types, often corresponding to functionally distinct protein isoforms. Mostly, one cell type is responsible for brain-region specific DIE. However, for fewer genes, multiple cell types influence DIE. Thus, regional identity can, although rarely, override cell-type specificity. Cell types indigenous to one anatomic structure display distinctive DIE, e.g. the choroid plexus epithelium manifests distinct transcription-start-site usage. Spatial transcriptomics and long-read sequencing yield a spatially resolved splicing map. Our methods quantify isoform expression with cell-type and spatial resolution and it contributes to further our understanding of how the brain integrates molecular and cellular complexity.


Assuntos
Processamento Alternativo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Biologia Computacional , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Camundongos , Modelos Animais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Análise de Célula Única/métodos , Análise Espacial
11.
Neurobiol Stress ; 13: 100265, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344718

RESUMO

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.

12.
Handb Clin Neurol ; 175: 209-220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33008526

RESUMO

Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.


Assuntos
Epigenômica , Caracteres Sexuais , Encéfalo , Epigênese Genética/genética , Feminino , Humanos , Masculino , Fenótipo
13.
Stress ; 23(5): 497-498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32795104
14.
Mol Psychiatry ; 25(3): 572-583, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30356121

RESUMO

Premenstrual dysphoric disorder (PMDD) affects over 5% of women, with symptoms similar to anxiety and major depression, and is associated with differential sensitivity to circulating ovarian hormones. Little is known about the genetic and epigenetic factors that increase the risk to develop PMDD. We report that 17ß-estradiol (E2) affects the behavior and the epigenome in a mouse model carrying a single-nucleotide polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met), in a way that recapitulates the hallmarks of PMDD. Ovariectomized mice heterozygous for the BDNF Met allele (Het-Met) and their matched wild-type (WT) mice were administered estradiol or vehicle in drinking water for 6 weeks. Using the open field and the splash test, we show that E2 add-back induces anxiety-like and depression-like behavior in Het-Met mice, but not in WT mice. RNA-seq of the ventral hippocampus (vHpc) highlights that E2-dependent gene expression is markedly different between WT mice and Het-Met mice. Through a comparative whole-genome RNA-seq analysis between mouse vHpc and lymphoblastoid cell line cultures from control women and women with PMDD, we discovered common epigenetic biomarkers that transcend species and cell types. Those genes include epigenetic modifiers of the ESC/E(Z) complex, an effector of response to ovarian steroids. Although the BDNF Met genotype intersects the behavioral and transcriptional traits of women with PMDD, we suggest that these similarities speak to the epigenetic factors by which ovarian steroids produce negative behavioral effects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Disfórico Pré-Menstrual/tratamento farmacológico , Transtorno Disfórico Pré-Menstrual/genética , Adulto , Animais , Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Estradiol/farmacologia , Estrogênios , Feminino , Perfilação da Expressão Gênica/métodos , Técnicas de Introdução de Genes , Genótipo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transtorno Disfórico Pré-Menstrual/fisiopatologia , Transcriptoma/genética
15.
Front Behav Neurosci ; 13: 157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354448

RESUMO

Early life experiences program brain structure and function and contribute to behavioral endophenotypes in adulthood. Epigenetic control of gene expression by those experiences affect discrete brain regions involved in mood, cognitive function and regulation of hypothalamic-pituitary-adrenal (HPA) axis. In rodents, acute restraint stress increases the expression of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) in hippocampal fields, including the CA3 pyramidal neurons. These CA3 neurons are crucially involved in cognitive function and mood regulation as well as activation of glucocorticoid (CORT) secretion. CA3 neurons also exhibit structural and functional changes after early-life stress (ELS) as well as after chronic stress in adulthood. Using a protocol of chronic ELS induced by limited bedding and nesting material followed by acute-swim stress (AS) in adulthood, we show that mice with a history of ELS display a blunted CORT response to AS, despite exhibiting activation of immediate early genes after stress similar to that found in control mice. We find that ELS induced persistently increased expression of the repressive H3K9me3 histone mark in the CA3 subfield at baseline that was subsequently decreased following AS. In contrast, AS induced a transient increase of this mark in control mice. Using translating ribosome affinity purification (TRAP) method to isolate CA3 translating mRNAs, we found that expression of genes of the epigenetic gene family, GABA/glutamate family, and glucocorticoid receptors binding genes were decreased transiently in control mice by AS and showed a persistent reduction in ELS mice. In most cases, AS in ELS mice did not induce gene expression changes. A stringent filtering of genes affected by AS in control and ELS mice revealed a noteworthy decrease in gene expression change in ELS mice compared to control. Only 18 genes were selectively regulated by AS in ELS mice and encompassed pathways such as circadian rhythm, inflammatory response, opioid receptors, and more genes included in the glucocorticoid receptor binding family. Thus, ELS programs a restricted translational response to stress in stress-sensitive CA3 neurons leading to persistent changes in gene expression, some of which mimic the transient effects of AS in control mice, while leaving in operation the immediate early gene response to AS.

16.
Front Mol Neurosci ; 12: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118884

RESUMO

Stress and the circadian systems play a major role in an organism's adaptation to environmental changes. The adaptive value of the stress system is reactive while that of the circadian system is predictive. Dysfunctions in these two systems may account for many clinically relevant disorders. Despite the evidence that interindividual differences in stress sensitivity and in the functioning of the circadian system are related, there is limited integrated research on these topics. Moreover, sex differences in these systems are poorly investigated. We used the perinatal stress (PRS) rat model, a well-characterized model of maladaptive programming of reactive and predictive adaptation, to monitor the running wheel behavior in male and female adult PRS rats, under a normal light/dark cycle as well as in response to a chronobiological stressor (6-h phase advance/shift). We then analyzed across different time points the expression of genes involved in circadian clocks, stress response, signaling, and glucose metabolism regulation in the suprachiasmatic nucleus (SCN). In the unstressed control group, we found a sex-specific profile that was either enhanced or inverted by PRS. Also, PRS disrupted circadian wheel-running behavior by inducing a phase advance in the activity of males and hypoactivity in females and increased vulnerability to chronobiological stress in both sexes. We also observed oscillations of several genes in the SCN of the unstressed group in both sexes. PRS affected males to greater extent than females, with PRS males displaying a pattern similar to unstressed females. Altogether, our findings provide evidence for a specific profile of dysmasculinization induced by PRS at the behavioral and molecular level, thus advocating the necessity to include sex as a biological variable to study the set-up of circadian system in animal models.

17.
Neurotoxicology ; 66: 138-149, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29630914

RESUMO

Exposure of the mother to adverse events during pregnancy is known to induce pathological programming of the HPA axis in the progeny, thereby increasing the vulnerability to neurobehavioral disorders. Maternal care plays a crucial role in the programming of the offspring, and oxytocin plays a key role in mother/pup interaction. Therefore, we investigated whether positive modulation of maternal behavior by activation of the oxytocinergic system could reverse the long-term alterations induced by perinatal stress (PRS; gestational restraint stress 3 times/day during the last ten days of gestation) on HPA axis activity, risk-taking behavior in the elevated-plus maze, hippocampal mGlu5 receptor and gene expression in Sprague-Dawley rats. Stressed and control unstressed dams were treated during the first postpartum week with an oxytocin receptor agonist, carbetocin (1 mg/kg, i.p.). Remarkably, reduction of maternal behavior was predictive of behavioral disturbances in PRS rats as well as of the impairment of the oxytocin and its receptor gene expression. Postpartum carbetocin corrected the reduction of maternal behavior induced by gestational stress as well as the impaired oxytocinergic system in the PRS progeny, which was associated with reduced risk-taking behavior. Moreover, postpartum carbetocin had an anti-stress effect on HPA axis activity in the adult PRS progeny and increased hippocampal mGlu5 receptor expression in aging. In conclusion, the activation of the oxytocinergic system in the early life plays a protective role against the programming effect by adverse experiences and could be considered as a novel and powerful potential therapeutic target for stress-related disorders.


Assuntos
Expressão Gênica , Comportamento Materno , Ocitocina/fisiologia , Assunção de Riscos , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Animais , Feminino , Idade Gestacional , Hipocampo/metabolismo , Ocitocina/administração & dosagem , Ocitocina/análogos & derivados , Período Pós-Parto , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Ocitocina/metabolismo , Estresse Psicológico/genética
18.
Nat Commun ; 8(1): 808, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993643

RESUMO

Males and females use distinct brain circuits to cope with similar challenges. Using RNA sequencing of ribosome-bound mRNA from hippocampal CA3 neurons, we found remarkable sex differences and discovered that female mice displayed greater gene expression activation after acute stress than males. Stress-sensitive BDNF Val66Met mice of both sexes show a pre-stressed translational phenotype in which the same genes that are activated without applied stress are also induced in wild-type mice by an acute stressor. Behaviourally, only heterozygous BDNF Val66Met females exhibit spatial memory impairment, regardless of acute stress. Interestingly, this effect is not observed in ovariectomized heterozygous BDNF Val66Met females, suggesting that circulating ovarian hormones induce cognitive impairment in Met carriers. Cognitive deficits are not observed in males of either genotype. Thus, in a brain region not normally associated with sex differences, this work sheds light on ways that genes, environment and sex interact to affect the transcriptome's response to a stressor.Animals' response to acute stress is known to be influenced by sex and genetics. Here the authors performed RNA-seq on actively translated mRNAs in hippocampal CA3 neurons in mice, and document the effects of sex and genotype (i.e., BDNF Val66Met) on acute stress-induced gene expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Biossíntese de Proteínas , Células Piramidais/fisiologia , Estresse Fisiológico/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Masculino , Camundongos Transgênicos , Ovariectomia , RNA Mensageiro , Análise de Sequência de RNA , Fatores Sexuais , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
19.
Nat Rev Endocrinol ; 13(11): 661-673, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28862266

RESUMO

Following the discovery of glucocorticoid receptors in the hippocampus and other brain regions, research has focused on understanding the effects of glucocorticoids in the brain and their role in regulating emotion and cognition. Glucocorticoids are essential for adaptation to stressors (allostasis) and in maladaptation resulting from allostatic load and overload. Allostatic overload, which can occur during chronic stress, can reshape the hypothalamic-pituitary-adrenal axis through epigenetic modification of genes in the hippocampus, hypothalamus and other stress-responsive brain regions. Glucocorticoids exert their effects on the brain through genomic mechanisms that involve both glucocorticoid receptors and mineralocorticoid receptors directly binding to DNA, as well as by non-genomic mechanisms. Furthermore, glucocorticoids synergize both genomically and non-genomically with neurotransmitters, neurotrophic factors, sex hormones and other stress mediators to shape an organism's present and future responses to a stressful environment. Here, we discuss the mechanisms of glucocorticoid action in the brain and review how glucocorticoids interact with stress mediators in the context of allostasis, allostatic load and stress-induced neuroplasticity.


Assuntos
Encéfalo/metabolismo , Glucocorticoides/metabolismo , Transtornos Mentais/genética , Plasticidade Neuronal/genética , Receptores de Glucocorticoides/genética , Estresse Fisiológico/genética , Estresse Psicológico/genética , Adaptação Fisiológica , Alostase , Animais , Epigenômica , Regulação da Expressão Gênica , Genômica , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Transtornos Mentais/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Fatores Sexuais , Estresse Psicológico/metabolismo
20.
Neural Plast ; 2016: 6752193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057367

RESUMO

Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiopatologia , Plasticidade Neuronal/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA