RESUMO
The MEK/ERK signalling pathway is involved in cell division, cell specialisation, survival and cell death (Shaul and Seger in Biochim Biophys Acta (BBA)-Mol Cell Res 1773(8):1213-1226, 2007). Here we study a polynomial dynamical system describing the dynamics of MEK/ERK proposed by Yeung et al. (Curr Biol 2019, https://doi.org/10.1016/j.cub.2019.12.052 ) with their experimental setup, data and known biological information. The experimental dataset is a time-course of ERK measurements in different phosphorylation states following activation of either wild-type MEK or MEK mutations associated with cancer or developmental defects. We demonstrate how methods from computational algebraic geometry, differential algebra, Bayesian statistics and computational algebraic topology can inform the model reduction, identification and parameter inference of MEK variants, respectively. Throughout, we show how this algebraic viewpoint offers a rigorous and systematic analysis of such models.
Assuntos
Conceitos Matemáticos , Modelos Biológicos , Cinética , Teorema de Bayes , Fosforilação , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
Analysis of single-cell transcriptomics often relies on clustering cells and then performing differential gene expression (DGE) to identify genes that vary between these clusters. These discrete analyses successfully determine cell types and markers; however, continuous variation within and between cell types may not be detected. We propose three topologically motivated mathematical methods for unsupervised feature selection that consider discrete and continuous transcriptional patterns on an equal footing across multiple scales simultaneously. Eigenscores (eigi) rank signals or genes based on their correspondence to low-frequency intrinsic patterning in the data using the spectral decomposition of the Laplacian graph. The multiscale Laplacian score (MLS) is an unsupervised method for locating relevant scales in data and selecting the genes that are coherently expressed at these respective scales. The persistent Rayleigh quotient (PRQ) takes data equipped with a filtration, allowing the separation of genes with different roles in a bifurcation process (e.g., pseudo-time). We demonstrate the utility of these techniques by applying them to published single-cell transcriptomics data sets. The methods validate previously identified genes and detect additional biologically meaningful genes with coherent expression patterns. By studying the interaction between gene signals and the geometry of the underlying space, the three methods give multidimensional rankings of the genes and visualisation of relationships between them.
RESUMO
Multisite protein phosphorylation plays a critical role in cell regulation [1-3]. It is widely appreciated that the functional capabilities of multisite phosphorylation depend on the order and kinetics of phosphorylation steps, but kinetic aspects of multisite phosphorylation remain poorly understood [4-6]. Here, we focus on what appears to be the simplest scenario, when a protein is phosphorylated on only two sites in a strict, well-defined order. This scenario describes the activation of ERK, a highly conserved cell-signaling enzyme. We use Bayesian parameter inference in a structurally identifiable kinetic model to dissect dual phosphorylation of ERK by MEK, a kinase that is mutated in a large number of human diseases [7-12]. Our results reveal how enzyme processivity and efficiencies of individual phosphorylation steps are altered by pathogenic mutations. The presented approach, which connects specific mutations to kinetic parameters of multisite phosphorylation mechanisms, provides a systematic framework for closing the gap between studies with purified enzymes and their effects in the living organism.