Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chest ; 165(4): 810-819, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37898184

RESUMO

BACKGROUND: Sphingosine-1-phosphate receptor ligands (SRLs) dampen immunopathologic damages in models of viral pneumonia. RESEARCH QUESTION: Is it feasible to administer an SRL therapy, here ozanimod (OZA), to acutely ill patients infected with SARS-CoV-2? STUDY DESIGN AND METHODS: The prospective randomized open-label COVID-19 Ozanimod Intervention (COZI) pilot trial was conducted in three Canadian hospitals. Patients admitted for COVID-19 requiring oxygen were eligible. Randomization was stratified for risk factors of poor outcome and oxygen needs at inclusion. Participants were allocated to standard of care or to standard of care plus OZA. OZA (oral, once daily, incremental dosage) was administered for a maximum of 14 days. Primary end point investigated for size effect and variance over time was the assessment of safety and efficacy, evaluated by the daily score on the World Health Organization-adapted six-point ordinal scale for clinical improvement analyzed under the intention-to-treat principle. RESULTS: Twenty-three patients were randomized to the standard of care arm, and 20 were randomized to the OZA arm from September 2020 to February 2022. Evaluation of efficacy showed nonsignificant reductions of median (interquartile range) duration of respiratory support (6 [3-10] vs 9 [4-12] days; P = .34), median duration of hospitalization (9 [6-12] vs 10 [6-18] days; P = .20), and median time to clinical improvement (4 [3-7] vs 7 [3-11] days; P = .12) for OZA compared with standard of care, respectively. Heart rate was significantly lower with OZA (65 [ 63-67] vs 71 [69-72] beats/min; P < .0001). However, QT and PR intervals were not affected. No severe adverse drug reaction was reported. INTERPRETATION: To our knowledge, SRL utility in severe pneumonia has never been tested in patients. This study shows for the first time that this new pharmacologic agent may safely be administered to patients hospitalized for viral pneumonia, with potential clinical benefits. Bradycardia was frequent but well tolerated. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04405102; URL: www. CLINICALTRIALS: gov.


Assuntos
COVID-19 , Indanos , Oxidiazóis , Pneumonia Viral , Humanos , SARS-CoV-2 , Oxigênio/uso terapêutico , Projetos Piloto , Estudos Prospectivos , Canadá , Pneumonia Viral/terapia , Resultado do Tratamento
2.
J Lipid Res ; 64(11): 100444, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730163

RESUMO

White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells-preadipocytes-following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2'-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.


Assuntos
Endocanabinoides , PPAR gama , Camundongos , Animais , Endocanabinoides/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Adipogenia , Proliferação de Células , Prostaglandinas , Células 3T3-L1 , Diferenciação Celular
3.
J Leukoc Biol ; 114(1): 84-91, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37032534

RESUMO

Allergic asthma is a chronic inflammatory disease characterized by Th2, conventional dendritic cell, and B-cell activation. In addition to excessive inflammation, asthma pathogenesis includes dysregulation of anti-inflammatory pathways, such as the CD200/CD200R pathway. Thus, we investigated whether a CD200R agonist, CD200Fc, could disrupt the inflammatory cascade in chronic allergic asthma pathogenesis using a mice model of experimental asthma. Mice were exposed to house dust mites for 5 wk, and CD200Fc treatment was initiated after chronic inflammation was established (starting on week 4). We demonstrate that chronic house dust mite exposure altered CD200 and CD200R expression on lung immune cell populations, including upregulation of CD200 on alveolar macrophages and reduced expression of CD200 on conventional dendritic cells. CD200Fc treatment does not change bronchoalveolar cellular infiltration, but it attenuates B-cell activation and skews the circulating immunoglobulin profile toward IgG2a. This is accompanied by reduced activation of conventional dendritic cells, including lower expression of CD40, especially on conventional dendritic cell subset 2 CD200R+. Furthermore, we confirm that CD200Fc can directly modulate conventional dendritic cell activation in vitro using bone marrow-derived dendritic cells. Thus, the CD200/CD200R pathway is dysregulated during chronic asthma pathogenesis, and the CD200R agonist modulates B-cell and dendritic cell activation but, in our chronic model, is not sufficient to alter inflammation measured in bronchoalveolar lavage.


Assuntos
Asma , Pyroglyphidae , Camundongos , Animais , Inflamação , Alérgenos , Células Dendríticas
4.
Respir Res ; 23(1): 275, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209215

RESUMO

BACKGROUND: Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP. METHODS: Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. RESULTS: Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP­associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. CONCLUSIONS: Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge.


Assuntos
Alveolite Alérgica Extrínseca , Linfócitos T , Animais , Antígenos , Linfócitos B , Líquido da Lavagem Broncoalveolar , Proteínas de Homeodomínio , Inflamação/patologia , Pulmão/patologia , Camundongos
5.
Front Physiol ; 13: 949378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105289

RESUMO

Hypoxia is common in lung diseases and a potent stimulator of the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1). Herein, we investigated the impact of Malat1 on hypoxia-induced lung dysfunction in mice. Malat1-deficient mice and their wild-type littermates were tested after 8 days of normoxia or hypoxia (10% oxygen). Hypoxia decreased elastance of the lung by increasing lung volume and caused in vivo hyperresponsiveness to methacholine without altering the contraction of airway smooth muscle. Malat1 deficiency also modestly decreased lung elastance but only when tested at low lung volumes and without altering lung volume and airway smooth muscle contraction. The in vivo responsiveness to methacholine was also attenuated by Malat1 deficiency, at least when elastance, a readout sensitive to small airway closure, was used to assess the response. More impressively, in vivo hyperresponsiveness to methacholine caused by hypoxia was virtually absent in Malat1-deficient mice, especially when hysteresivity, a readout sensitive to small airway narrowing heterogeneity, was used to assess the response. Malat1 deficiency also increased the coefficient of oxygen extraction and decreased ventilation in conscious mice, suggesting improvements in gas exchange and in clinical signs of respiratory distress during natural breathing. Combined with a lower elastance at low lung volumes at baseline, as well as a decreased propensity for small airway closure and narrowing heterogeneity during a methacholine challenge, these findings represent compelling evidence suggesting that the lack of Malat1 protects the access to alveoli for air entering the lung.

6.
PLoS One ; 16(11): e0260636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847189

RESUMO

Lung cancer is the leading cause of cancer-related deaths. While the recent use of immune checkpoint inhibitors significantly improves patient outcomes, responsiveness remains restricted to a small proportion of patients. Conventional dendritic cells (DCs) play a major role in anticancer immunity. In mice, two subpopulations of DCs are found in the lung: DC2s (CD11b+Sirpα+) and DC1s (CD103+XCR1+), the latest specializing in the promotion of anticancer immune responses. However, the impact of lung cancer on DC populations and the consequent influence on the anticancer immune response remain poorly understood. To address this, DC populations were studied in murine models of Lewis Lung Carcinoma (LLC) and melanoma-induced lung metastasis (B16F10). We report that direct exposure to live or dead cancer cells impacts the capacity of DCs to differentiate into CD103+ DC1s, leading to profound alterations in CD103+ DC1 proportions in the lung. In addition, we observed the accumulation of CD103loCD11b+ DCs, which express DC2 markers IRF4 and Sirpα, high levels of T-cell inhibitory molecules PD-L1/2 and the regulatory molecule CD200. Finally, DC1s were injected in combination with an immune checkpoint inhibitor (anti-PD-1) in the B16F10 model of resistance to the anti-PD-1 immune checkpoint therapy; the co-injection restored sensitivity to immunotherapy. Thus, we demonstrate that lung tumor development leads to the accumulation of CD103loCD11b+ DCs with a regulatory potential combined with a reduced proportion of highly-specialized antitumor CD103+ DC1s, which could promote cancer growth. Additionally, promoting an anticancer DC signature could be an interesting therapeutic avenue to increase the efficacy of existing immune checkpoint inhibitors.


Assuntos
Carcinoma Pulmonar de Lewis , Células Dendríticas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Melanoma Experimental , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Metástase Neoplásica
7.
Methods Mol Biol ; 2241: 59-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486728

RESUMO

Eosinophilia is a hallmark of allergic airway inflammation, and eosinophils represent an integral effector leukocyte through their release of various granule-stored cytokines and proteins. Numerous mouse models have been developed to mimic clinical disease and they have been instrumental in furthering our understanding of the role of eosinophils in disease. Most of these models consist of intranasal (i.n.) administration of antigenic proteases including papain and house dust mite (HDM) or the neo-antigen ovalbumin, with a resulting Th2-biased immune response and airway eosinophilia. These models have been particularly informative when combined with the numerous transgenic mice available that modulate eosinophil frequency or the mechanisms involved in their migration. Here, we describe the current models of allergic airway inflammation and outline some of the transgenic mice available to study eosinophil disease.


Assuntos
Eosinófilos/citologia , Hipersensibilidade/imunologia , Transtornos Respiratórios/imunologia , Alérgenos/imunologia , Animais , Asma/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas , Modelos Animais de Doenças , Eosinófilos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos/imunologia , Camundongos Transgênicos , Hipersensibilidade Respiratória/imunologia
8.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L717-L727, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845704

RESUMO

Most of electronic cigarette (e-cigarette) users are also smoking tobacco cigarettes. Because of the relative novelty of this habit, very little is known on the impact of vaping on pulmonary health, even less on the potential interactions of dual e-cigarette and tobacco cigarette use. Therefore, we used well-established mouse models to investigate the impact of dual exposure to e-cigarette vapors and tobacco cigarette smoke on lung homeostasis. Groups of female BALB/c mice were exposed to room air, tobacco smoke only, nicotine-free flavor-free e-cigarette vapors only or both tobacco smoke and e-cigarette vapors. Moreover, since tobacco smoke and electronic cigarette vapors both affect circadian processes in the lungs, groups of mice were euthanized at two different time points during the day. We found that dual-exposed mice had altered lung circadian gene expression compared with mice exposed to tobacco smoke alone. Dual-exposed mice also had different frequencies of dendritic cells, macrophages, and neutrophils in the lung tissue compared with mice exposed to tobacco smoke alone, an observation also valid for B-lymphocytes and CD4+ and CD8+ T lymphocytes. Exposure to e-cigarette vapors also impacted the levels of immunoglobulins in the bronchoalveolar lavage and serum. Finally, e-cigarette and dual exposures increased airway resistance compared with mice exposed to room air or tobacco smoke alone, respectively. Taken together, these data suggest that e-cigarette vapors, even without nicotine or flavors, could affect how the lungs react to tobacco cigarette smoke exposure in dual users, potentially altering the pathological course triggered by smoking.


Assuntos
Linfócitos B/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Animais , Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nicotina/metabolismo , Nicotina/farmacologia
9.
Am J Respir Cell Mol Biol ; 63(2): 209-218, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32289229

RESUMO

In a proportion of patients with hypersensitivity pneumonitis, the biological and environmental factors that sustain inflammation are ill defined, resulting in no effective treatment option. Bioaerosols found in occupational settings are complex and often include Toll-like receptor ligands, such as endotoxins. How Toll-like receptor ligands contribute to the persistence of hypersensitivity pneumonitis, however, remains poorly understood. In a previous study, we found that an S1P1 (sphingosine-1-phosphate receptor 1) agonist prevented the reactivation of antigen-driven B-cell responses in the lung. Here, we assessed the impact of endotoxins on B-cell activation in preexisting hypersensitivity pneumonitis and the role of S1P1 in this phenomenon. The impact of endotoxins on pre-established hypersensitivity pneumonitis was studied in vivo. S1P1 levels were tracked on B cells in the course of the disease using S1P1-eGFP knockin mice, and the role of S1P1 on B-cell functions was assessed using pharmacological tools. S1P1 was found on B cells in experimental hypersensitivity pneumonitis. Endotoxin exposure enhanced neutrophil accumulation in the BAL of mice with experimental hypersensitivity pneumonitis. This was associated with enhanced CD69 cell-surface expression on lymphocytes in the BAL. In isolated B cells, endotoxins increased cell-surface levels of costimulatory molecules and CD69, which was prevented by an S1P1 agonist. S1P1 modulators also reduced TNF production by B cells and their capacity to trigger T-cell cooperation ex vivo. An S1P1 ligand directly inhibited endotoxin-induced B-cell activation.


Assuntos
Alveolite Alérgica Extrínseca/imunologia , Linfócitos B/imunologia , Endotoxinas/imunologia , Receptores de Esfingosina-1-Fosfato/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , Camundongos , Neutrófilos/imunologia
10.
Am J Respir Cell Mol Biol ; 62(1): 35-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247144

RESUMO

Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.


Assuntos
Asma/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Músculo Liso/metabolismo
11.
J Lipid Res ; 60(10): 1776-1786, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409741

RESUMO

Lung cancer causes more deaths than any other cancer. Sphingolipids encompass metabolically interconnected species whose balance has pivotal effects on proliferation, migration, and apoptosis. In this study, we paralleled quantification of sphingolipid species with quantitative (q)PCR analyses of metabolic enzymes in order to identify dysregulated routes of sphingolipid metabolism in different subtypes of lung cancers. Lung samples were submitted to histopathological reexamination in order to confirm cancer type/subtype, which included adenocarcinoma histological subtypes and squamous cell and neuroendocrine carcinomas. Compared with benign lesions and tumor-free parenchyma, all cancers featured decreased sphingosine-1-phosphate and SMs. qPCR analyses evidenced differential mechanisms leading to these alterations between cancer types, with neuroendocrine carcinomas upregulating SGPL1, but CERT1 being downregulated in adenocarcinomas and squamous cell carcinomas. 2-Hydroxyhexosylceramides (2-hydroxyHexCers) were specifically increased in adenocarcinomas. While UDP-glycosyltransferase 8 (UGT8) transcript levels were increased in all cancer subtypes, fatty acid 2-hydroxylase (FA2H) levels were higher in adenocarcinomas than in squamous and neuroendocrine carcinomas. As a whole, we report differing mechanisms through which all forms of lung cancer achieve low SM and lysosphingolipids. Our results also demonstrate that FA2H upregulation is required for the accumulation of 2-hydroxyHexCers in lung cancers featuring high levels of UGT8.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Gangliosídeo Galactosiltransferase/genética , Oxigenases de Função Mista/genética , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Hidroxilação , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
12.
Int J Biochem Cell Biol ; 112: 141-144, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077782

RESUMO

Constant exposure to foreign particles in the airways requires tight immune regulation in order to maintain sufficient anti-microbial defences, while preventing immunopathological responses that could impair gas exchange. Dysregulation of immunoregulatory pathways has been associated with asthma and allergy. This review will focus on the CD200 regulatory pathway and its role in the asthmatic cascade. CD200 and its receptors are highly expressed in the lung, on epithelial cells and leukocytes, and emerging evidence links dysregulation of the CD200 pathway with asthma. Moreover, pharmacological modulation of CD200 receptors was shown to improve clinical and inflammatory outcomes of preclinical asthma models. Therefore, the involvement of CD200 in asthma is increasingly recognized and preclinical studies support the contention that it could constitute an additional target to alleviate asthma exacerbation and/or reduce disease severity.


Assuntos
Antígenos CD/biossíntese , Asma/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Animais , Asma/patologia , Asma/terapia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Pulmão/metabolismo , Pulmão/patologia
13.
Eur J Immunol ; 49(4): 638-652, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707446

RESUMO

Conventional DCs are a heterogeneous population that bridge the innate and adaptive immune systems. The lung DC population comprises CD103+ XCR1+ DC1s and CD11b+ DC2s; their various combined functions cover the whole spectrum of immune responses needed to maintain homeostasis. Here, we report that in vivo exposure to LPS leads to profound alterations in the proportions of CD103+ XCR1+ DCs in the lung. Using ex vivo LPS and TNF stimulations of murine lung and spleen-isolated DCs, we show that this is partly due to a direct downregulation of the GM-CSF-induced DC CD103 expression. Furthermore, we demonstrate that LPS-induced systemic inflammation alters the transcriptional signature of DC precursors toward a lower capacity to differentiate into XCR1+ DCs. Also, we report that TNF prevents the capacity of pre-DCs to express CD103 upon maturation. Overall, our results indicate that exposure to LPS directly impacts the capacity of pre-DCs to differentiate into XCR1+ DCs, in addition to lowering their capacity to express CD103. This leads to decreased proportions of CD103+ XCR1+ DCs in the lung, favoring CD11b+ DCs, which likely plays a role in the break in homeostasis following LPS exposure, and in determining the nature of the immune response to LPS.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Animais , Antígenos CD/genética , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Expressão Gênica , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/genética , Pulmão/patologia , Camundongos , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Necrose Tumoral/farmacologia
14.
Biochem Pharmacol ; 165: 249-262, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753812

RESUMO

Sphingosine kinase 1 (SphK1) and 2 (SphK2) have been shown contribute to synovial inflammation in animal models of arthritis. However, low levels of intracellular sphingosine-1 phosphate (S1P) were reported in fibroblast-like synoviocytes (FLS) from patients in the end stage of rheumatoid arthritis (RA) compared to normal FLS. Moreover, the S1P receptor-mediated chemokine synthesis was altered in RAFLS in response to chemical hypoxia. Since the mechanisms responsible for low levels of intracellular S1P in RAFLS are not fully identified, we evaluated the contribution of SphKs to the S1P-induced synthesis of chemokines under conditions of chemical hypoxia. Our results show that a chemical hypoxia mimetic cobalt chloride (CoCl2) increased SphK1 expression and activation in normal FLS but not in RAFLS. Using selective inhibitors of SphKs and gene silencing approaches, we provide evidence that both SphK1 and SphK2 are involved in hypoxia-induced chemokine production in normal FLS. In contrast, only SphK2 mediates hypoxia-induced chemokine production in RAFLS. Moreover, CoCl2 increased S1P2 and S1P3 receptor mRNA levels in normal FLS but not in RAFLS. The data suggest that altered expression and/or activation of SphK1 combined with reduced induction of S1P receptor expression by CoCl2 impaired the CoCl2-mediated autocrine S1P receptor signaling loop and chemokine production in RAFLS.


Assuntos
Artrite Reumatoide/enzimologia , Fibroblastos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Membrana Sinovial/enzimologia , Hipóxia Celular , Células Cultivadas , Quimiocinas/metabolismo , Cobalto/farmacologia , Ativação Enzimática , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/fisiologia
15.
J Vis Exp ; (137)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059019

RESUMO

Air volume changes created by a conscious subject breathing spontaneously within a body box are at the basis of plethysmography, a technique used to non-invasively assess some features of the respiratory function in humans as well as in laboratory animals. The present article focuses on the application of the double-chamber plethysmography (DCP) in small animals. It provides background information on the methodology as well as a detailed step-by-step procedure to successfully assess respiratory function in conscious, spontaneously breathing animals in a non-invasive manner. The DCP can be used to monitor the respiratory function of multiple animals in parallel, as well as to identify changes induced by aerosolized substances over a chosen time period and in a repeated manner. Experiments on control and allergic mice are used herein to demonstrate the utility of the technique, explain the associated outcome parameters, as well as to discuss the related advantages and shortcomings. Overall, the DCP provides valid and theoretically sound readouts that can be trusted to evaluate the respiratory function of conscious small animals both at baseline and after challenges with aerosolized substances.


Assuntos
Pletismografia/métodos , Respiração , Animais , Estado de Consciência , Camundongos
16.
Respir Res ; 19(1): 131, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970083

RESUMO

BACKGROUND: Cigarette smoke exposure can affect pulmonary lipid homeostasis and cause a progressive increase in pulmonary antibodies against oxidized low-density lipoproteins (OxLDL). Similarly, increased anti-OxLDL antibodies are observed in atherosclerosis, a pathology also tightly associated with smoking and lipid homeostasis disruption. Several immunization strategies against oxidized lipid species to help with their clearance have been shown to reduce the formation of atherosclerotic lesions. Since oxidized lipids are generated during cigarette smoke exposure, we investigated the impact of a prophylactic immunization protocol against OxLDL on the pulmonary effects of cigarette smoke exposure in mice. METHODS: Mice were immunized systemically with a mixture of human OxLDL (antigen source) and AddaVax (adjuvant) or PBS alone prior to the initiation of acute (2 week) or sub-chronic (8 weeks) cigarette smoke exposure protocols. Anti-OxLDL antibodies were measured in the bronchoalveolar lavage (BAL) fluid and serum by direct ELISA. Pulmonary impacts of cigarette smoke exposure and OxLDL immunization were assessed by measuring BAL inflammatory cells, lung functions, and changes in lung structure and gene levels of matrix/matrix-related genes. RESULTS: Immunization to OxLDL led to a marked increase in circulating and pulmonary antibodies against OxLDL that persisted during cigarette smoke exposure. OxLDL immunization did not exacerbate or reduce the inflammatory response following acute or sub-chronic exposure to cigarette smoke. OxLDL immunization alone had effects similar to cigarette smoke exposure on lung functions but OxLDL immunization and cigarette smoke exposure had no additive effects on these parameters. No obvious changes in lung histology, airspace or levels of matrix and matrix-related genes were caused by OxLDL immunization compared to vehicle treatment. CONCLUSIONS: Overall, this study shows for the first time that a prophylactic immunization protocol against OxLDL can potentially have detrimental effects lung functions, without having additive effects over cigarette smoke exposure. This work sheds light on a complex dynamic between anti-OxLDL antibodies and the pulmonary response to cigarette smoke exposure.


Assuntos
Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Lipoproteínas LDL/imunologia , Transtornos Respiratórios/imunologia , Transtornos Respiratórios/prevenção & controle , Fumaça/efeitos adversos , Administração por Inalação , Animais , Feminino , Humanos , Imunização , Lipoproteínas LDL/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Transtornos Respiratórios/induzido quimicamente
17.
Toxicol In Vitro ; 50: 391-398, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29709566

RESUMO

Bioaerosol exposure in highly contaminated occupational settings is associated with an increased risk of disease. Yet, few determinants allow for accurate prediction of the immunopathogenic potential of complex bioaerosols. Since dendritic cells are instrumental to the initiation of immunopathological reactions, we studied how dendritic cell activation was modified in response to individual agents, combined microbial agents, or air sample eluates from highly contaminated environmental settings. We found that combinations of agents accelerated and enhanced the activation of in vitro-generated murine bone marrow-derived dendritic cell cultures, when compared to individual agents. We also determined that endotoxins are not sufficient to predict the potential of air samples to induce bone marrow-derived dendritic cell activation, especially when endotoxin levels are low. Importantly, bone marrow-derived dendritic cell activation stratified samples from three environmental settings (swine barns, dairy barns, and wastewater treatment plants) according to their air quality status. As a whole, these results support the notion that the interplay between bioaerosol components impacts on their ability to activate dendritic cells and that bone marrow-derived dendritic cell cultures are promising tools to study the immunomodulatory impact of air samples and their components.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Dendríticas/efeitos dos fármacos , Poeira , Poluentes Atmosféricos/análise , Animais , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Células Cultivadas , Poeira/análise , Endotoxinas/análise , Endotoxinas/toxicidade , Abrigo para Animais , Camundongos Endogâmicos C57BL
18.
Diabetes ; 67(7): 1285-1296, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29496744

RESUMO

The current demographic shift toward an aging population has led to a robust increase in the prevalence of age-associated metabolic disorders. Recent studies have demonstrated that the etiology of obesity-related insulin resistance that develops with aging differs from that induced by high-calorie diets. Whereas the role of adaptive immunity in changes in energy metabolism driven by nutritional challenges has recently gained attention, its impact on aging remains mostly unknown. Here we found that the number of follicular B2 lymphocytes and expression of the B-cell-specific transcriptional coactivator OcaB increase with age in spleen and in intra-abdominal epididymal white adipose tissue (eWAT), concomitantly with higher circulating levels of IgG and impaired glucose homeostasis. Reduction of B-cell maturation and Ig production-especially that of IgG2c-by ablation of OcaB prevented age-induced glucose intolerance and insulin resistance and promoted energy expenditure by stimulating fatty acid utilization in eWAT and brown adipose tissue. Transfer of wild-type bone marrow in OcaB-/- mice replenished the eWAT B2-cell population and IgG levels, which diminished glucose tolerance, insulin sensitivity, and energy expenditure while increasing body weight gain in aged mice. Thus these findings demonstrate that upon aging, modifications in B-cell-driven adaptive immunity contribute to glucose intolerance and fat accretion.


Assuntos
Envelhecimento/metabolismo , Linfócitos B/fisiologia , Metabolismo Energético/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Obesidade , Transativadores/genética , Adolescente , Adulto , Idoso , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Epididimo , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/genética , Obesidade/imunologia , Obesidade/metabolismo , Adulto Jovem
19.
Am J Respir Cell Mol Biol ; 58(1): 79-88, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28850257

RESUMO

Airway hyperresponsiveness (AHR), a major hallmark of asthma, results from alterations of contractile and noncontractile elements of airway reactivity. CD34 is a sialomucin that is expressed on various cells involved in asthma, such as eosinophils and airway smooth muscle precursors, highlighting its potential influence in AHR. To study the role of CD34 in regulating the contractile and noncontractile elements of AHR, AHR was induced by chronic exposure to house dust mite (HDM) antigen. To assess the role of CD34 on the contractile elements of AHR, airway reactivity and airway smooth muscle contractility in response to methacholine were measured. To assess CD34's role in regulating the noncontractile elements of AHR, a chimeric mouse model was used to determine the impact of CD34 expression on inflammatory versus microenvironmental cells in AHR development. Extracellular matrix production, mucus production, and mast cell degranulation were also measured. Whereas wild-type mice developed AHR in response to HDM, a loss of airway reactivity was observed in Cd34-/- mice 24 hours after the last exposure to HDM compared with naive controls. This was reversed when airway reactivity was measured 1 week after the last HDM exposure. Additionally, mast cell degranulation and mucus production were altered in the absence of CD34 expression. Importantly, simultaneous expression of CD34 on cells originating from the hematopoietic compartment and the microenvironment was needed for expression of this phenotype. These results provide evidence that CD34 is required for AHR and airway reactivity maintenance in the early days after an inflammatory episode in asthma.


Assuntos
Antígenos CD34/metabolismo , Asma/metabolismo , Asma/fisiopatologia , Contração Muscular , Músculo Liso , Sistema Respiratório , Animais , Antígenos CD34/genética , Asma/genética , Asma/patologia , Degranulação Celular , Modelos Animais de Doenças , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/fisiopatologia
20.
PLoS One ; 12(6): e0179678, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628641

RESUMO

BACKGROUND: Pulmonary dendritic cells drive lung responses to foreign antigens, including Saccharopolyspora rectivirgula, a causative agent of hypersensitivity pneumonitis. While the airway inflammatory mechanisms involved in hypersensitivity pneumonitis are well described, the mechanisms leading to the break in homeostasis and hypersensitivity pneumonitis onset are not well-described, and could involve CD103+ dendritic cells, which are found at baseline and during inflammatory responses in the lung. However, recent demonstration of the ability of CD103+ dendritic cells to induce inflammatory responses starkly contrasts with their classically described role as regulatory cells. These discrepancies may be attributable to the lack of current information on the importance of CD103 expression and modulation on these cells during inflammatory episodes. METHODS: To verify the importance of CD103 expression in the regulation of hypersensitivity pneumonitis, wild-type and Cd103-/- mice were exposed intranasally to S. rectivirgula and airway inflammation was quantified. Surface expression of CD103 in response to S. rectivirgula exposure was studied and cell transfers were used to determine the relative importance of CD103 expression on dendritic cells and T cells in regulating the inflammation in hypersensitivity pneumonitis. RESULTS: Cd103-/- mice developed an exacerbated inflammatory response as early as 18h following S. rectivirgula exposure. CD103 expression on dendritic cells was downregulated quickly following S. rectivirgula exposure, and cell transfers demonstrated that CD103 expression on dendritic cells specifically (and not T cells) regulates the onset and severity of this response. CONCLUSION: All in all, we demonstrate that CD103 expression by dendritic cells, but not T cells, is crucial for homeostasis maintenance and the regulation of the TH17 airway inflammatory response in hypersensitivity pneumonitis.


Assuntos
Alveolite Alérgica Extrínseca/patologia , Antígenos CD/metabolismo , Células Dendríticas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/microbiologia , Animais , Antígenos de Bactérias/imunologia , Antígenos CD/genética , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/genética , Leucócitos/citologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Saccharopolyspora/metabolismo , Saccharopolyspora/patogenicidade , Índice de Gravidade de Doença , Baço/citologia , Baço/imunologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA