Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718822

RESUMO

Advanced maternal age is a major cause of infertility, miscarriage, and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.

2.
EMBO J ; 43(7): 1351-1383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413836

RESUMO

The cell cycle is ordered by a controlled network of kinases and phosphatases. To generate gametes via meiosis, two distinct and sequential chromosome segregation events occur without an intervening S phase. How canonical cell cycle controls are modified for meiosis is not well understood. Here, using highly synchronous budding yeast populations, we reveal how the global proteome and phosphoproteome change during the meiotic divisions. While protein abundance changes are limited to key cell cycle regulators, dynamic phosphorylation changes are pervasive. Our data indicate that two waves of cyclin-dependent kinase (Cdc28Cdk1) and Polo (Cdc5Polo) kinase activity drive successive meiotic divisions. These two distinct phases of phosphorylation are ensured by the meiosis-specific Spo13 protein, which rewires the phosphoproteome. Spo13 binds to Cdc5Polo to promote phosphorylation in meiosis I, particularly of substrates containing a variant of the canonical Cdc5Polo motif. Overall, our findings reveal that a master regulator of meiosis directs the activity of a kinase to change the phosphorylation landscape and elicit a developmental cascade.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteoma , Meiose
4.
Curr Biol ; 34(1): 117-131.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134935

RESUMO

Aneuploid human eggs (oocytes) are a major cause of infertility, miscarriage, and chromosomal disorders. Such aneuploidies increase greatly as women age, with defective linkages between sister chromatids (cohesion) in meiosis as a common cause. We found that loss of a specific pool of the cohesin protector protein, shugoshin 2 (SGO2), may contribute to this phenomenon. Our data indicate that SGO2 preserves sister chromatid cohesion in meiosis by protecting a "cohesin bridge" between sister chromatids. In human oocytes, SGO2 localizes to both sub-centromere cups and the pericentromeric bridge, which spans the sister chromatid junction. SGO2 normally colocalizes with cohesin; however, in meiosis II oocytes from older women, SGO2 is frequently lost from the pericentromeric bridge and sister chromatid cohesion is weakened. MPS1 and BUB1 kinase activities maintain SGO2 at sub-centromeres and the pericentromeric bridge. Removal of SGO2 throughout meiosis I by MPS1 inhibition reduces cohesion protection, increasing the incidence of single chromatids at meiosis II. Therefore, SGO2 deficiency in human oocytes can exacerbate the effects of maternal age by rendering residual cohesin at pericentromeres vulnerable to loss in anaphase I. Our data show that impaired SGO2 localization weakens cohesion integrity and may contribute to the increased incidence of aneuploidy observed in human oocytes with advanced maternal age.


Assuntos
Proteínas de Ciclo Celular , Oócitos , Humanos , Feminino , Idoso , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Coesinas , Meiose , Centrômero/metabolismo , Cromátides/metabolismo , Segregação de Cromossomos
5.
Microb Cell Fact ; 22(1): 259, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104077

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS: Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS: We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.


Assuntos
Pichia , Saccharomycetales , Humanos , Animais , Camundongos , Pichia/genética , Pichia/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Saccharomycetales/genética , Recombinação Homóloga , Cromossomos
6.
Genes Dev ; 37(7-8): 259-260, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37045607

RESUMO

Cohesin is an ATPase that drives chromosome organization through the generation of intramolecular loops and sister chromatid cohesion. Cohesin's ATPase is stimulated by Scc2 binding but attenuated by acetylation of its Smc3 subunit. In this issue of Genes & Development, Boardman and colleagues (pp. 277-290) take a genetic approach to generate a mechanistic model for the opposing regulation of cohesin's ATPase by Scc2 and Smc3 acetylation. Their findings provide in vivo insight into how this important genome organizer functions in vivo.


Assuntos
Adenosina Trifosfatases , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina , Cromátides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 13(1): 6755, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347869

RESUMO

Human beings are made of ~50 trillion cells which arise from serial mitotic divisions of a single cell - the fertilised egg. Remarkably, the early human embryo is often chromosomally abnormal, and many are mosaic, with the karyotype differing from one cell to another. Mosaicism presumably arises from chromosome segregation errors during the early mitotic divisions, although these events have never been visualised in living human embryos. Here, we establish live cell imaging of chromosome segregation using normally fertilised embryos from an egg-share-to-research programme, as well as embryos deselected during fertility treatment. We reveal that the first mitotic division has an extended prometaphase/metaphase and exhibits phenotypes that can cause nondisjunction. These included multipolar chromosome segregations and lagging chromosomes that lead to formation of micronuclei. Analysis of nuclear number and size provides evidence of equivalent phenotypes in 2-cell human embryos that gave rise to live births. Together this shows that errors in the first mitotic division can be tolerated in human embryos and uncovers cell biological events that contribute to preimplantation mosaicism.


Assuntos
Segregação de Cromossomos , Embrião de Mamíferos , Humanos , Mosaicismo , Metáfase , Cariótipo , Blastocisto , Aneuploidia
8.
Annu Rev Genet ; 56: 279-314, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055650

RESUMO

Kinetochores are molecular machines that power chromosome segregation during the mitotic and meiotic cell divisions of all eukaryotes. Aristotle explains how we think we have knowledge of a thing only when we have grasped its cause. In our case, to gain understanding of the kinetochore, the four causes correspond to questions that we must ask: (a) What are the constituent parts, (b) how does it assemble, (c) what is the structure and arrangement, and (d) what is the function? Here we outline the current blueprint for the assembly of a kinetochore, how functions are mapped onto this architecture, and how this is shaped by the underlying pericentromeric chromatin. The view of the kinetochore that we present is possible because an almost complete parts list of the kinetochore is now available alongside recent advances using in vitro reconstitution, structural biology, and genomics. In many organisms, each kinetochore binds to multiple microtubules, and we propose a model for how this ensemble-level architecture is organized, drawing on key insights from the simple one microtubule-one kinetochore setup in budding yeast and innovations that enable meiotic chromosome segregation.


Assuntos
Centrômero , Cinetocoros , Centrômero/genética , Segregação de Cromossomos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Cromatina/genética , Cromatina/metabolismo
9.
Elife ; 112022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103590

RESUMO

Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that meiotic chromosomes are organised into functional domains by Eco1 acetyltransferase-dependent positioning of both chromatin loops and sister chromatid cohesion in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.

10.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787674

RESUMO

Chromatin tethers to the nuclear envelope are lost during mitosis to facilitate chromosome segregation. How these connections are reestablished to ensure functional genome organization in interphase is unclear. Ptak et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103036) identify a phosphorylation and SUMOylation-dependent cascade that links chromatin to the nuclear membrane during late mitosis.


Assuntos
Segregação de Cromossomos , Sumoilação , Cromossomos/genética , Interfase , Mitose/genética
11.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929514

RESUMO

During mitosis, sister chromatids attach to microtubules from opposite poles, called biorientation. Sister chromatid cohesion resists microtubule forces, generating tension, which provides the signal that biorientation has occurred. How tension silences the surveillance pathways that prevent cell cycle progression and correct erroneous kinetochore-microtubule attachments remains unclear. Here we show that SUMOylation dampens error correction to allow stable sister kinetochore biorientation and timely anaphase onset. The Siz1/Siz2 SUMO ligases modify the pericentromere-localized shugoshin (Sgo1) protein before its tension-dependent release from chromatin. Sgo1 SUMOylation reduces its binding to protein phosphatase 2A (PP2A), and weakening of this interaction is important for stable biorientation. Unstable biorientation in SUMO-deficient cells is associated with persistence of the chromosome passenger complex (CPC) at centromeres, and SUMOylation of CPC subunit Bir1 also contributes to timely anaphase onset. We propose that SUMOylation acts in a combinatorial manner to facilitate dismantling of the error correction machinery within pericentromeres and thereby sharpen the metaphase-anaphase transition.


Assuntos
Proteínas de Transporte/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Cromátides/genética , Humanos , Cinetocoros , Mitose/genética , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Sumoilação/genética
13.
Curr Biol ; 31(2): 283-296.e7, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33157029

RESUMO

Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Segregação de Cromossomos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/isolamento & purificação , Mitose , Proteômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
14.
Genetics ; 216(2): 395-408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32843356

RESUMO

In meiosis, crossover (CO) formation between homologous chromosomes is essential for faithful segregation. However, misplaced meiotic recombination can have catastrophic consequences on genome stability. Within pericentromeres, COs are associated with meiotic chromosome missegregation. In organisms ranging from yeast to humans, pericentromeric COs are repressed. We previously identified a role for the kinetochore-associated Ctf19 complex (Ctf19c) in pericentromeric CO suppression. Here, we develop a dCas9/CRISPR-based system that allows ectopic targeting of Ctf19c-subunits. Using this approach, we query sufficiency in meiotic CO suppression, and identify Ctf19 as a mediator of kinetochore-associated CO control. The effect of Ctf19 is encoded in its NH2-terminal tail, and depends on residues important for the recruitment of the Scc2-Scc4 cohesin regulator. This work provides insight into kinetochore-derived control of meiotic recombination. We establish an experimental platform to investigate and manipulate meiotic CO control. This platform can easily be adapted in order to investigate other aspects of chromosome biology.


Assuntos
Troca Genética , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Supressão Genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Cinetocoros/química , Meiose , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Bioessays ; 42(10): e2000018, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32761854

RESUMO

Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk.


Assuntos
Centrômero , Segregação de Cromossomos , Animais , Proteínas de Ciclo Celular/genética , Cromátides , Cinetocoros , Meiose/genética , Camundongos
16.
Nature ; 582(7810): 119-123, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494069

RESUMO

The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.


Assuntos
Centrômero/genética , Centrômero/metabolismo , Genes Fúngicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/química , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Genoma Fúngico/genética , Viabilidade Microbiana/genética , Mitose/genética , Conformação Molecular , Coesinas
17.
PLoS Biol ; 18(3): e3000635, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32155147

RESUMO

The role of proteins often changes during evolution, but we do not know how cells adapt when a protein is asked to participate in a different biological function. We forced the budding yeast, Saccharomyces cerevisiae, to use the meiosis-specific kleisin, recombination 8 (Rec8), during the mitotic cell cycle, instead of its paralog, Scc1. This perturbation impairs sister chromosome linkage, advances the timing of genome replication, and reduces reproductive fitness by 45%. We evolved 15 parallel populations for 1,750 generations, substantially increasing their fitness, and analyzed the genotypes and phenotypes of the evolved cells. Only one population contained a mutation in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and delay genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow cells to use an existing protein to participate in new biological functions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Mitose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Biológica/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Evolução Molecular Direcionada , Evolução Molecular , Genoma Fúngico , Meiose , Mutação , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã , Coesinas
18.
Wellcome Open Res ; 4: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906881

RESUMO

Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13 Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13 Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13 Δ cells.

19.
Methods Mol Biol ; 2004: 119-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147914

RESUMO

A plethora of biological processes like gene transcription, DNA replication, DNA recombination, and chromosome segregation are mediated through protein-DNA interactions. A powerful method for investigating proteins within a native chromatin environment in the cell is chromatin immunoprecipitation (ChIP). Combined with the recent technological advancement in next generation sequencing, the ChIP assay can map the exact binding sites of a protein of interest across the entire genome. Here we describe a-step-by step protocol for ChIP followed by library preparation for ChIP-seq from yeast cells.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromossomos Fúngicos/genética , Leveduras/genética , Sítios de Ligação/genética , Cromatina/genética , Segregação de Cromossomos/genética , Ligação Proteica/genética
20.
Chromosoma ; 128(3): 331-354, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31037469

RESUMO

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Eucariotos/genética , Eucariotos/metabolismo , Evolução Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA