Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 26(12): 2147-2157, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37904042

RESUMO

Behavioral adaptation to potential threats requires both a global representation of danger to prepare the organism to react in a timely manner but also the identification of specific threatening situations to select the appropriate behavioral responses. The prefrontal cortex is known to control threat-related behaviors, yet it is unknown whether it encodes global defensive states and/or the identity of specific threatening encounters. Using a new behavioral paradigm that exposes mice to different threatening situations, we show that the dorsomedial prefrontal cortex (dmPFC) encodes a general representation of danger while simultaneously encoding a specific neuronal representation of each threat. Importantly, the global representation of danger persisted in error trials that instead lacked specific threat identity representations. Consistently, optogenetic prefrontal inhibition impaired overall behavioral performance and discrimination of different threatening situations without any bias toward active or passive behaviors. Together, these data indicate that the prefrontal cortex encodes both a global representation of danger and specific representations of threat identity to control the selection of defensive behaviors.


Assuntos
Neurônios , Córtex Pré-Frontal , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Optogenética
2.
Glia ; 67(5): 915-934, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30632636

RESUMO

Optogenetics has been widely expanded to enhance or suppress neuronal activity and it has been recently applied to glial cells. Here, we have used a new approach based on selective expression of melanopsin, a G-protein-coupled photopigment, in astrocytes to trigger Ca2+ signaling. Using the genetically encoded Ca2+ indicator GCaMP6f and two-photon imaging, we show that melanopsin is both competent to stimulate robust IP3-dependent Ca2+ signals in astrocyte fine processes, and to evoke an ATP/Adenosine-dependent transient boost of hippocampal excitatory synaptic transmission. Additionally, under low-frequency light stimulation conditions, melanopsin-transfected astrocytes can trigger long-term synaptic changes. In vivo, melanopsin-astrocyte activation enhances episodic-like memory, suggesting melanopsin as an optical tool that could recapitulate the wide range of regulatory actions of astrocytes on neuronal networks in behaving animals. These results describe a novel approach using melanopsin as a precise trigger for astrocytes that mimics their endogenous G-protein signaling pathways, and present melanopsin as a valuable optical tool for neuron-glia studies.


Assuntos
Astrócitos/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Optogenética/métodos , Opsinas de Bastonetes/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Compostos Azo/farmacologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Pirimidinas/farmacologia , Opsinas de Bastonetes/genética , Potenciais Sinápticos/fisiologia , Triazóis/farmacologia , Xantenos/farmacologia
3.
Neuron ; 98(5): 935-944.e5, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29779943

RESUMO

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1 receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1 receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1 receptors increased intracellular astroglial Ca2+ levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs.


Assuntos
Astrócitos/metabolismo , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/fisiologia , Serina/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Hipocampo , Técnicas In Vitro , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Receptor CB1 de Canabinoide/metabolismo
4.
Nat Neurosci ; 20(11): 1540-1548, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945222

RESUMO

The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.


Assuntos
Tonsila do Cerebelo/fisiologia , Astrócitos/fisiologia , Medo/fisiologia , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/psicologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptor A2A de Adenosina/fisiologia , Sinapses/efeitos dos fármacos
5.
Glia ; 65(4): 569-580, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28130845

RESUMO

Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580.


Assuntos
Envelhecimento , Astrócitos/fisiologia , Encéfalo/citologia , Comunicação Celular/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Acetilcolina/farmacologia , Trifosfato de Adenosina/farmacologia , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Presenilina-1/deficiência , Presenilina-1/genética , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
6.
Elife ; 52016 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-28012274

RESUMO

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.


Assuntos
Astrócitos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , GABAérgicos/metabolismo , Hipocampo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Camundongos Knockout , Rede Nervosa , Redes Neurais de Computação , Técnicas de Patch-Clamp , Receptores de GABA-A , Receptores de GABA-B , Receptores de Glutamato Metabotrópico/metabolismo
7.
Cereb Cortex ; 25(10): 3699-712, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25260706

RESUMO

Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal synapses through stimulation of astrocytes when coincident with postsynaptic activity. This LTP requires the coordinated activity of the 3 elements of the tripartite synapse: 1) eCB-evoked astrocyte calcium signal that stimulates glutamate release; 2) postsynaptic nitric oxide production; and 3) activation of protein kinase C and presynaptic group I metabotropic glutamate receptors, whose location at presynaptic sites was confirmed by immunoelectron microscopy. Hence, while eCBs act as retrograde signals to depress homoneuronal synapses, they serve as lateral messengers to induce LTP in distant heteroneuronal synapses through stimulation of astrocytes. Therefore, eCBs can trigger LTP through stimulation of astrocyte-neuron signaling, revealing novel cellular mechanisms of eCB effects on synaptic plasticity.


Assuntos
Astrócitos/fisiologia , Endocanabinoides/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Células Piramidais/fisiologia , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Proteína Quinase C/metabolismo , Células Piramidais/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Sinapses/metabolismo
8.
Biochim Biophys Acta ; 1831(8): 1322-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707264

RESUMO

Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Colesterol/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfolipídeos/farmacologia , Transporte Biológico Ativo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA