Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neurobiol Dis ; 192: 106430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325718

RESUMO

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease without a cure to reverse its progression. Its main hallmark is the nuclear protein TDP-43, which undergoes different post-translational modifications leading to a loss of function in the nucleus and an increase in toxicity in the cytoplasm. Previous reports have indicated that pathogenic TDP-43 exhibits prion-like propagation in various contexts. With the aim of advancing therapeutics focused on preventing the propagation of TDP-43 pathology, we studied the potential role of pathogenic TDP-43 in lymphoblasts from sporadic ALS patients. We used lymphoblastoid cell lines from sporadic ALS patients as a source of pathogenic forms of TDP-43, and healthy human cells (lymphoblasts, myoblasts, neuroblastoma SH-SY5Y, or osteosarcoma U2OS) as recipient cells to investigate the seeding and spread of TDP-43 proteinopathy. Furthermore, we evaluated the potential of targeting TDP-43 phosphorylation with a CK-1 inhibitor to prevent the propagation of the pathology. The results presented herein indicate that pathogenic forms of TDP-43 are secreted into the extracellular medium of sporadic ALS lymphoblasts and could be transported by extracellular vesicles, spreading TDP-43 pathology to healthy cells. Moreover, tunneling nanotubes have also been discovered in pathological cells and may be involved in the transport of TDP-43. Interestingly, targeting TDP-43 phosphorylation with an in-house designed CK-1 inhibitor (IGS2.7) was sufficient to halt TDP-43 pathology transmission, in addition to its known effects on restoring the homeostasis of TDP-43 protein in patients-derived cells.


Assuntos
Esclerose Lateral Amiotrófica , Neuroblastoma , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Caseína Quinase I , Proteínas de Ligação a DNA/metabolismo
2.
Front Mol Neurosci ; 16: 1243277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621404

RESUMO

Introduction: TDP-43 proteinopathy in Alzheimer's disease (AD) patients is recently emerging as a relevant pathomolecular event that may have been overlooked. Recent results in immortalized lymphocytes from AD patients have shown not only an increase of post-translational modifications in TDP-43, such as hyperphosphorylation and fragmentation, but also its prionic behaviour and cell-to-cell disease transmission. With the main goal to advance therapeutic interventions, we present in this work different kinase inhibitors with potential to restore this pathological mechanism. Methodology: We have used immortalized lymphocytes from healthy controls and AD severe patients to evaluate the correction of TDP-43 pathology after the treatment with previously synthetized TTBK1 and CK1 inhibitors. Moreover we used the conditioned mediums of these cells to perform different disease propagation experiments. Results: TDP-43 pathology observed in lymphoblasts from severe AD patients is reduced after the treatment with TTBK1 and CK1 inhibitors (decreasing phosphorylation and increasing nuclear localisation), Furthermore, the significant increase in TDP-43 phosphorylation, cytoplasmic accumulation and aberrant F-actin protrusions (TNT-like structures) observed in control cells growing in CM from AD lymphoblasts were abolished when the CM from AD lymphoblasts treated with previously reported TTBK1 and CK1 inhibitors were used. In addition, the cytosolic transport mediated by molecular motors of the receptor cells was altered with the induced TDP-43 pathology, but it was not produced with the abovementioned pretreated CMs. Conclusion: TTBK1 and CK1 inhibitors, specially VNG1.47 and IGS2.7 compounds, restore TDP-43 pathology and avoid cell-to-cell propagation in immortalized lymphocytes from AD patients, being excellent candidates for the future therapy of this prevalent and devastating disease.

3.
Antioxidants (Basel) ; 12(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36978829

RESUMO

Loss-of-function (LOF) mutations in GRN gene, which encodes progranulin (PGRN), cause frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). FTLD-TDP is one of the most common forms of early onset dementia, but its pathogenesis is not fully understood. Mitochondrial dysfunction has been associated with several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Here, we have investigated whether mitochondrial alterations could also contribute to the pathogenesis of PGRN deficiency-associated FTLD-TDP. Our results showed that PGRN deficiency induced mitochondrial depolarization, increased ROS production and lowered ATP levels in GRN KD SH-SY5Y neuroblastoma cells. Interestingly, lymphoblasts from FTLD-TDP patients carrying a LOF mutation in the GRN gene (c.709-1G > A) also demonstrated mitochondrial depolarization and lower ATP levels. Such mitochondrial damage increased mitochondrial fission to remove dysfunctional mitochondria by mitophagy. Interestingly, PGRN-deficient cells showed elevated mitochondrial mass together with autophagy dysfunction, implying that PGRN deficiency induced the accumulation of damaged mitochondria by blocking its degradation in the lysosomes. Importantly, the treatment with two brain-penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27), known for preventing the phosphorylation and cytosolic accumulation of TDP-43, rescued mitochondrial function in PGRN-deficient cells. Taken together, these results suggest that mitochondrial function is impaired in FTLD-TDP associated with LOF GRN mutations and that the TDP-43 pathology linked to PGRN deficiency might be a key mechanism contributing to such mitochondrial dysfunction. Furthermore, our results point to the use of drugs targeting TDP-43 pathology as a promising therapeutic strategy for restoring mitochondrial function in FTLD-TDP and other TDP-43-related diseases.

4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769169

RESUMO

The goal of this work was to elucidate the pathogenic mechanism of an ALS-associated missense mutation, p.Arg573Gly (R573G), in the TBK1 gene. In particular, we seek to analyze the influence of this variant on the cellular levels and the function of TBK1 in immortalized cells from an ALS patient. The patient (Code# E7) belonged to a Spanish family with autosomal dominant disease manifesting in the sixth decade as either dementia or ALS. Four control individuals without signs of neurological disease were also included in this study. Our results indicate that the R375G TBK1 mutation did not affect the levels of mRNA nor the total TBK1 content; however, we observed a significant decrease in the levels of TBK1 phosphorylation, which is essential for TBK1 activity, as well as a significant reduction in the phosphorylation of p62 and RIPK1, known substrates for TBK1. Lymphoblasts from the R573G TBK1 mutation carrier patient display pathological TDP-43 homeostasis, showing elevated levels of phosphorylated TDP-43 and accumulation of the protein in the cytosolic compartment. In addition, the functional decrease in TBK1 activity observed in the E7 patient did not alter the autophagy flux, but it seems to be enough to increase ROS levels as well as the expression of pro-inflammatory cytokine IL-6.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Mutação , Fosforilação , Mutação de Sentido Incorreto , Proteínas de Ligação a DNA/metabolismo
5.
J Enzyme Inhib Med Chem ; 37(1): 2348-2356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050834

RESUMO

Multitarget drugs are a promising therapeutic approach against Alzheimer's disease. In this work, a new family of 5-substituted indazole derivatives with a multitarget profile including cholinesterase and BACE1 inhibition is described. Thus, the synthesis and evaluation of a new class of 5-substituted indazoles has been performed. Pharmacological evaluation includes in vitro inhibitory assays on AChE/BuChE and BACE1 enzymes. Also, the corresponding competition studies on BuChE were carried out. Additionally, antioxidant properties have been calculated from ORAC assays. Furthermore, studies of anti-inflammatory properties on Raw 264.7 cells and neuroprotective effects in human neuroblastoma SH-SY5Y cells have been performed. The results of pharmacological tests have shown that some of these 5-substituted indazole derivatives 1-4 and 6 behave as AChE/BuChE and BACE1 inhibitors, simultaneously. In addition, some indazole derivatives showed anti-inflammatory (3, 6) and neuroprotective (1-4 and 6) effects against Aß-induced cell death in human neuroblastoma SH-SY5Y cells with antioxidant properties.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Inibidores da Colinesterase , Humanos , Indazóis/farmacologia , Neuroblastoma/tratamento farmacológico , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897697

RESUMO

Deficiencies in Mannosidase ß (MANBA) are associated with neurological abnormalities and recurrent infections. The single nucleotide polymorphism located in the 3'UTR of MANBA, rs7665090, was found to be associated with multiple sclerosis (MS) susceptibility. We aimed to study the functional impact of this polymorphism in lymphocytes isolated from MS patients and healthy controls. A total of 152 MS patients and 112 controls were genotyped for rs7665090. MANBA mRNA expression was quantified through qPCR and MANBA enzymatic activity was analyzed. Upon phytohemagglutinin stimulation, immune activation was evaluated by flow cytometry detection of CD69, endocytic function, and metabolic rates with Seahorse XFp Analyzer, and results were stratified by variation in rs7665090. A significantly reduced gene expression (p < 0.0001) and enzymatic activity (p = 0.018) of MANBA were found in lymphocytes of MS patients compared to those of controls. The rs7665090*GG genotype led to a significant ß-mannosidase enzymatic deficiency correlated with lysosomal dysfunction, as well as decreased metabolic activation in lymphocytes of MS patients compared to those of rs7665090*GG controls. In contrast, lymphocytes of MS patients and controls carrying the homozygous AA genotype behaved similarly. Our work provides new evidence highlighting the impact of the MS-risk variant, rs7665090, and the role of MANBA in the immunopathology of MS.


Assuntos
Esclerose Múltipla , beta-Manosidose , Endocitose , Predisposição Genética para Doença , Genótipo , Humanos , Ativação Linfocitária/genética , Lisossomos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , beta-Manosidase/genética
7.
Biomedicines ; 10(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203594

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder for which there is currently no effective treatment. Despite advances in the molecular pathology of the characteristic histopathological markers of the disease (tau protein and ß-amyloid), their translation to the clinic has not provided the expected results. Increasing evidences have demonstrated the presence of aggregates of TDP-43 (TAR DNA binding protein 43) in the postmortem brains of patients diagnosed with AD. The present research is focused on of the study of the pathological role of TDP-43 in AD. For this purpose, immortalized lymphocytes samples from patients diagnosed with different severity of sporadic AD were used and the TDP-43 pathology was analyzed against controls, looking for differences in their fragmentation, phosphorylation and cellular location using Western blot and immunocytochemical techniques. The results revealed an increase in TDP-43 fragmentation, as well as increased phosphorylation and aberrant localization of TDP-43 in the cytosolic compartment of lymphocytes of patients diagnosed with severe AD. Moreover, a fragment of approximately 25 KD was found in the extracellular medium of cells derived from severe AD individuals that seem to have prion-like characteristics. We conclude that TDP-43 plays a key role in AD pathogenesis and its cell to cell propagation.

8.
J Med Chem ; 65(2): 1585-1607, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34978799

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease without any effective treatment. Protein TDP-43 is a pathological hallmark of ALS in both sporadic and familiar patients. Post-translational modifications of TDP-43 promote its aggregation in the cytoplasm. Tau-Tubulin kinase (TTBK1) phosphorylates TDP-43 in cellular and animal models; thus, TTBK1 inhibitors emerge as a promising therapeutic strategy for ALS. The design, synthesis, biological evaluation, kinase-ligand complex structure determination, and molecular modeling studies confirmed novel pyrrolopyrimidine derivatives as valuable inhibitors for further development. Moreover, compound 29 revealed good brain penetration in vivo and was able to reduce TDP-43 phosphorylation not only in cell cultures but also in the spinal cord of transgenic TDP-43 mice. A shift to M2 anti-inflammatory microglia was also demonstrated in vivo. Both these activities led to motor neuron preservation in mice, proposing pyrrolopyrimidine 29 as a valuable lead compound for future ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Estudos de Casos e Controles , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Distribuição Tecidual
9.
J Med Chem ; 65(3): 1867-1882, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34985276

RESUMO

Hybrid compounds containing structural fragments of the Rho kinase inhibitor fasudil and the NRF2 inducers caffeic and ferulic acids were designed with the aid of docking and molecular mechanics studies. Following the synthesis of the compounds using a peptide-coupling methodology, they were characterized for their ROCK2 inhibition, radical scavenging, effects on cell viability (MTT assay), and NRF2 induction (luciferase assay). One of the compounds (1d) was selected in view of its good multitarget profile and good tolerability. It was able to induce the NRF2 signature, promoting the expression of the antioxidant response enzymes HO-1 and NQO1, via a KEAP1-dependent mechanism. Analysis of mRNA and protein levels of the NRF2 pathway showed that 1d induced the NRF2 signature in control and SOD1-ALS lymphoblasts but not in sALS, where it was already increased in the basal state. These results show the therapeutic potential of this compound, especially for ALS patients with a SOD1 mutation.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Esclerose Lateral Amiotrófica/tratamento farmacológico , Ácidos Cumáricos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/síntese química , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/toxicidade , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/síntese química , Ácidos Cumáricos/toxicidade , Feminino , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/toxicidade , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/agonistas , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Quinases Associadas a rho/antagonistas & inibidores
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445680

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3ß is one of the protein kinases involved in TDP-43 phosphorylation. Up-regulation of its expression and activity is reported on spinal cord and cortex tissues of ALS patients. Here, we propose the repurposing of Tideglusib, an in-house non-ATP competitive GSK-3ß inhibitor that is currently in clinical trials for autism and myotonic dystrophy, as a promising therapeutic strategy for ALS. With this aim we have evaluated the efficacy of Tideglusib in different experimental ALS models both in vitro and in vivo. Moreover, we observed that GSK-3ß activity is increased in lymphoblasts from sporadic ALS patients, with a simultaneous increase in TDP-43 phosphorylation and cytosolic TDP-43 accumulation. Treatment with Tideglusib decreased not only phospho-TDP-43 levels but also recovered its nuclear localization in ALS lymphoblasts and in a human TDP-43 neuroblastoma model. Additionally, we found that chronic oral treatment with Tideglusib is able to reduce the increased TDP-43 phosphorylation in the spinal cord of Prp-hTDP-43A315T mouse model. Therefore, we consider Tideglusib as a promising drug candidate for ALS, being proposed to start a clinical trial phase II by the end of the year.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Tiadiazóis/farmacologia , Idoso , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Preparações Farmacêuticas/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Medula Espinal/metabolismo
11.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809456

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition where motor neurons (MNs) degenerate. Most of the ALS cases are sporadic (sALS), whereas 10% are hereditarily transmitted (fALS), among which mutations are found in the gene that codes for the enzyme superoxide dismutase 1 (SOD1). A central question in ALS field is whether causative mutations display selective alterations not found in sALS patients, or they converge on shared molecular pathways. To identify specific and common mechanisms for designing appropriate therapeutic interventions, we focused on the SOD1-mutated (SOD1-ALS) versus sALS patients. Since ALS pathology involves different cell types other than MNs, we generated lymphoblastoid cell lines (LCLs) from sALS and SOD1-ALS patients and healthy donors and investigated whether they show changes in oxidative stress, mitochondrial dysfunction, metabolic disturbances, the antioxidant NRF2 pathway, inflammatory profile, and autophagic flux. Both oxidative phosphorylation and glycolysis appear to be upregulated in lymphoblasts from sALS and SOD1-ALS. Our results indicate significant differences in NRF2/ARE pathway between sALS and SOD1-ALS lymphoblasts. Furthermore, levels of inflammatory cytokines and autophagic flux discriminate between sALS and SOD1-ALS lymphoblasts. Overall, different molecular mechanisms are involved in sALS and SOD1-ALS patients and thus, personalized medicine should be developed for each case.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/imunologia , Linfócitos/imunologia , Mutação/genética , Medicina de Precisão , Superóxido Dismutase-1/genética , Ácidos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Linhagem Celular Transformada , Metabolismo Energético , Feminino , Heterozigoto , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Nanomaterials (Basel) ; 11(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803158

RESUMO

CdSe quantum dots (QDs) are valuable tools for deciphering molecular mechanisms in cells. Their conjugation with antibodies offers a unique staining source with optimal characteristics, including increased photostability and narrow emission spectra, allowing for improved multiplexing capabilities using a single excitation source. In combination with pathology models derived from patients, they have great potential to contribute to quantitative molecular profiling and promote personalized medicine. However, the commercial availability of diverse CdSe QDs is still limited and characterization techniques must be performed to these materials or the conjugates developed in the lab to assure a proper function and reproducibility. Furthermore, while there is significant data of QDs experiments in cell lines, the literature with primary human cells is scarce, and QD behavior in these systems may be different. Rigorous characterization data of commercially available QDs and their conjugates with biomolecules of interest is needed in order to establish their potential for target labelling and expand their use among research labs. Here we compare the characterization and labelling performance of different QD conjugates in SH-SY5Y cell line, fibroblasts and immortalized lymphocytes derived from amyotrophic lateral sclerosis patients.

13.
J Neurochem ; 156(3): 379-390, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32628315

RESUMO

TDP-43 has been identified as the major component of protein aggregates found in affected neurons in FTLD-TDP and amyotrophic lateral sclerosis (ALS) patients. TDP-43 is hyperphosphorylated, ubiquitinated, and cleaved in the C-terminus. CDC-7 was reported to phosphorylate TDP-43. There are no effective treatments for either FTLD-TDP or ALS, being a pressing need for the search of new therapies. We hypothesized that modulating CDC-7 activity with small molecules that are able to interfere with TDP-43 phosphorylation could be a good therapeutic strategy for these diseases. Here, we have studied the effects of novel brain penetrant, thiopurine-based, CDC-7 inhibitors in TDP-43 homeostasis in immortalized lymphocytes from FTLD-TDP patients, carriers of a loss-of-function GRN mutation, as well as in cells derived from sporadic ALS patients. We found that selective CDC-7 inhibitors, ERP1.14a and ERP1.28a, are able to decrease the enhanced TDP-43 phosphorylation in cells derived from FTLD-TDP and ALS patients and to prevent cytosolic accumulation of TDP-43. Moreover, treatment of FTLD-TDP lymphoblasts with CDC-7 inhibitors leads to recovering the nuclear function of TDP-43-inducing CDK6 repression. We suggest that CDC-7 inhibitors, mainly the heterocyclic compounds here shown, may be considered as promising drug candidates for the ALS/FTD spectrum.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Idoso , Células Cultivadas , Proteínas de Ligação a DNA/efeitos dos fármacos , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Eur J Med Chem ; 210: 112968, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33139113

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Aggregates of the nuclear protein TDP-43 have been recognized as a hallmark of proteinopathy in both familial and sporadic cases of ALS. Post-translational modifications of this protein, include hyperphosphorylation, cause disruption of TDP-43 homeostasis and as a consequence, promotion of its neurotoxicity. Among the kinases involved in these changes, cell division cycle kinase 7 (CDC7) plays an important role by directly phosphorylating TDP-43. In the present manuscript the discovery, synthesis, and optimization of a new family of selective and ATP-competitive CDC7 inhibitors based on 6-mercaptopurine scaffold are described. Moreover, we demonstrate the ability of these inhibitors to reduce TDP-43 phosphorylation in both cell cultures and transgenic animal models such as C. elegans and Prp-hTDP43 (A315T) mice. Altogether, the compounds described here may be useful as versatile tools to explore the role of CDC7 in TDP-43 phosphorylation and also as new drug candidates for the future development of ALS therapies.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Esclerose Lateral Amiotrófica/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Sci Rep ; 10(1): 4449, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157143

RESUMO

Pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease where no treatment exists, involves the compartmentalization of the nuclear protein TDP-43 (TAR DNA-binding protein 43) in the cytoplasm which is promoted by its aberrant phosphorylation and others posttranslational modifications. Recently, it was reported that CK-1δ (protein casein kinase-1δ) is able to phosphorylate TDP-43. Here, the preclinical efficacy of a benzothiazole-based CK-1δ inhibitor IGS-2.7, both in a TDP-43 (A315T) transgenic mouse and in a human cell-based model of ALS, is shown. Treatment with IGS-2.7 produces a significant preservation of motor neurons in the anterior horn at lumbar level, a decrease in both astroglial and microglial reactivity in this area, and in TDP-43 phosphorylation in spinal cord samples. Furthermore, the recovery of TDP-43 homeostasis (phosphorylation and localization) in a human-based cell model from ALS patients after treatment with IGS-2.7 is also reported. Moreover, we have shown a trend to increase in CK-1δ mRNA in spinal cord and significantly in frontal cortex of sALS cases. All these data show for the first time the in vivo modulation of TDP-43 toxicity by CK-1δ inhibition with IGS-2.7, which may explain the benefits in the preservation of spinal motor neurons and point to the relevance of CK-1δ inhibitors in a future disease-modifying treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Caseína Quinase Idelta/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/citologia , Inibidores de Proteínas Quinases/farmacologia , Medula Espinal/citologia , Idoso , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Fosforilação , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
16.
Mol Neurobiol ; 57(4): 1938-1951, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898159

RESUMO

Alzheimer's disease (AD), the leading cause of dementia in the elderly, is a neurodegenerative disorder marked by progressive impairment of cognitive ability. Patients with AD display neuropathological lesions including senile plaques, neurofibrillary tangles, and neuronal loss. There are no disease-modifying drugs currently available. With the number of affected individuals increasing dramatically throughout the world, there is obvious urgent need for effective treatment strategy for AD. The multifactorial nature of AD encouraged the development of multifunctional compounds, able to interact with several putative targets. Here, we have evaluated the effects of two in-house designed cannabinoid receptors (CB) agonists showing inhibitory actions on ß-secretase-1 (BACE-1) (NP137) and BACE-1/butyrylcholinesterase (BuChE) (NP148), on cellular models of AD, including immortalized lymphocytes from late-onset AD patients. Furthermore, the performance of TgAPP mice in a spatial navigation task was investigated following chronic administration of NP137 and NP148. We report here that NP137 and NP148 showed neuroprotective effects in amyloid-ß-treated primary cortical neurons, and NP137 in particular rescued the cognitive deficit of TgAPP mice. The latter compound was able to blunt the abnormal cell response to serum addition or withdrawal of lymphoblasts derived from AD patients. It is suggested that NP137 could be a good drug candidate for future treatment of AD.


Assuntos
Doença de Alzheimer/complicações , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linfócitos/patologia , Transtornos da Memória/complicações , Transtornos da Memória/imunologia , Receptores de Canabinoides/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Ratos Wistar
17.
Nutrients ; 11(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370365

RESUMO

Oxidative damage is involved in the pathophysiology of age-related ailments, including Alzheimer's disease (AD). Studies have shown that the brain tissue and also lymphocytes from AD patients present increased oxidative stress compared to healthy controls (HCs). Here, we use lymphoblastoid cell lines (LCLs) from AD patients and HCs to investigate the role of resveratrol (RV) and selenium (Se) in the reduction of reactive oxygen species (ROS) generated after an oxidative injury. We also studied whether these compounds elicited expression changes in genes involved in the antioxidant cell response and other aging-related mechanisms. AD LCLs showed higher ROS levels than those from HCs in response to H2O2 and FeSO4 oxidative insults. RV triggered a protective response against ROS under control and oxidizing conditions, whereas Se exerted antioxidant effects only in AD LCLs under oxidizing conditions. RV increased the expression of genes encoding known antioxidants (catalase, copper chaperone for superoxide dismutase 1, glutathione S-transferase zeta 1) and anti-aging factors (sirtuin 1 and sirtuin 3) in both AD and HC LCLs. Our findings support RV as a candidate for inducing resilience and protection against AD, and reinforce the value of LCLs as a feasible peripheral cell model for understanding the protective mechanisms of nutraceuticals against oxidative stress in aging and AD.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Selênio/farmacologia , Envelhecimento/genética , Doença de Alzheimer/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Humanos , Linfócitos/efeitos dos fármacos
18.
ACS Chem Neurosci ; 10(3): 1183-1196, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30785719

RESUMO

Accumulation of TDP-43 in the cytoplasm of diseased neurons is the pathological hallmark of frontotemporal dementia-TDP (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), two diseases that lack efficacious medicine to prevent or to stop disease progression. The discovery of mutations in the TARDBP gene (encoding the nuclear protein known as TDP-43) in both FTLD and ALS patients provided evidence for a link between TDP-43 alterations and neurodegeneration. Our understanding of TDP-43 function has advanced profoundly in the past several years; however, its complete role and the molecular mechanisms that lead to disease are not fully understood. Here we summarize the recent studies of this protein, its relation to neurodegenerative diseases, and the therapeutic strategies for restoring its homeostasis with small molecules. Finally, we briefly discuss the available cellular and animal models that help to shed light on TDP-43 pathology and could serve as tools for the discovery of pharmacological agents for the treatment of TDP-43-related diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/terapia , Humanos , Fármacos Neuroprotetores/farmacologia
19.
Eur J Med Chem ; 166: 90-107, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685536

RESUMO

Multitarget cannabinoids could be a promising therapeutic strategic to fight against Alzheimer's disease. In this sense, our group has developed a new family of indazolylketones with multitarget profile including cannabinoids, cholinesterase and BACE-1 activity. A medicinal chemistry program that includes computational design, synthesis and in vitro and cellular evaluation has allowed to us to achieve lead compounds. In this work, the synthesis and evaluation of a new class of indazolylketones have been performed. Pharmacological evaluation includes functional activity for cannabinoid receptors on isolated tissue. In addition, in vitro inhibitory assays in AChE/BuChE enzymes and BACE-1 have been carried out. Furthermore, studies of neuroprotective effects in human neuroblastoma SH-SY5Y cells and studies of the mechanisms of survival/death in lymphoblasts of patients with Alzheimer's disease have been achieved. The results of pharmacological tests have revealed that some of these derivatives (5, 6) behave as CB2 cannabinoid agonists and simultaneously show BuChE and/or BACE-1 inhibition.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Indazóis/química , Cetonas/química , Cetonas/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Canabinoides/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Humanos , Cetonas/síntese química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptor CB2 de Canabinoide/antagonistas & inibidores
20.
Mol Neurobiol ; 56(4): 2424-2432, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30030753

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder of still unknown etiology that results in loss of motoneurons, paralysis, and death, usually between 2 and 4 years from onset. There are no currently available ALS biomarkers to support early diagnosis and to facilitate the assessment of the efficacy of new treatments. Since ALS is considered a multisystemic disease, here we have investigated the usefulness of immortalized lymphocytes from sporadic ALS patients to study TDP-43 homeostasis as well as to provide a convenient platform to evaluate TDP-43 phosphorylation as a novel therapeutic approach for ALS. We report here that lymphoblasts from ALS patients recapitulate the hallmarks of TDP-43 processing in affected motoneurons, such as increased phosphorylation, truncation, and mislocalization of TDP-43. Moreover, modulation of TDP-43 by an in-house designed protein casein kinase-1δ (CK-1δ) inhibitor, IGS3.27, reduced phosphorylation of TDP-43, and normalized the nucleo-cytosol translocation of TDP-43 in ALS lymphoblasts. Therefore, we conclude that lymphoblasts, easily accessible cells, from ALS patients could be a useful model to study pathological features of ALS disease and a suitable platform to test the effects of potential disease-modifying drugs even in a personalized manner.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Estudos de Casos e Controles , Linhagem Celular Transformada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA