Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Clin Med ; 13(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39274524

RESUMO

Introduction/Objectives: Several studies have documented the development and persistence of symptoms related to COVID-19 and its secondary complications up to 12 months after the infection. We aimed to identify the medical complications following COVID-19 infection in the Indigenous Zapotec population of the Isthmus of Tehuantepec region in Oaxaca, Mexico. Methods: This is a cross-sectional analytical study that included 90 Indigenous Zapotec participants (30 males and 60 females) from the Tehuantepec region, Oaxaca, Mexico, who had an infectious process due to SARS-CoV-2. Sociodemographic and clinical data were identified through questionnaires. Results: Among the 201 participants, 90 individuals (66.7% women, 33.3% men) had contracted COVID-19. Out of these, 61 individuals reported persistent symptoms post-infection, with a mean symptom duration of 13.87 months. The results show significant variations in symptom duration based on age, marital status, educational attainment, vaccination status, and blood group. The most commonly reported symptoms included a dry cough, fever, myalgia, fatigue, headache, and depressive symptoms. Conclusions: This study highlights the post-COVID-19 symptoms and their prevalence within a specific sample of the Indigenous Zapotec population in Oaxaca, along with the sociodemographic and clinical factors influencing the duration of these symptoms. It underscores the necessity of personalized recovery strategies and highlights the critical role of vaccination in mitigating the long-term impacts of SARS-CoV-2.

2.
Comput Biol Med ; 179: 108833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981212

RESUMO

This study provides a comprehensive perspective on the deregulated pathways and impaired biological functions prevalent in human glioblastoma (GBM). In order to characterize differences in gene expression between individuals diagnosed with GBM and healthy brain tissue, we have designed and manufactured a specific, custom DNA microarray. The results obtained from differential gene expression analysis were validated by RT-qPCR. The datasets obtained from the analysis of common differential expressed genes in our cohort of patients were used to generate protein-protein interaction networks of functionally enriched genes and their biological functions. This network analysis, let us to identify 16 genes that exhibited either up-regulation (CDK4, MYC, FOXM1, FN1, E2F7, HDAC1, TNC, LAMC1, EIF4EBP1 and ITGB3) or down-regulation (PRKACB, MEF2C, CAMK2B, MAPK3, MAP2K1 and PENK) in all GBM patients. Further investigation of these genes and enriched pathways uncovered in this investigation promises to serve as a foundational step in advancing our comprehension of the molecular mechanisms underpinning GBM pathogenesis. Consequently, the present work emphasizes the critical role that the unveiled molecular pathways likely play in shaping innovative therapeutic approaches for GBM management. We finally proposed in this study a list of compounds that target hub of GBM-related genes, some of which are already in clinical use, underscoring the potential of those genes as targets for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Análise de Sequência com Séries de Oligonucleotídeos , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Feminino , Mapas de Interação de Proteínas/genética , Pessoa de Meia-Idade
3.
Eur J Endocrinol ; 190(6): 421-433, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701338

RESUMO

INTRODUCTION: Growth hormone (GH)-secreting pituitary tumors (GHomas) are the most common acromegaly cause. At diagnosis, most of them are macroadenomas, and up to 56% display cavernous sinus invasion. Biomarker assessment associated with tumor growth and invasion is important to optimize their management. OBJECTIVES: The study aims to identify clinical/hormonal/molecular biomarkers associated with tumor size and invasiveness in GHomas and to analyze the influence of pre-treatment with somatostatin analogs (SSAs) or dopamine agonists (DAs) in key molecular biomarker expression. METHODS: Clinical/analytical/radiological variables were evaluated in 192 patients from the REMAH study (ambispective multicenter post-surgery study of the Spanish Society of Endocrinology and Nutrition). The expression of somatostatin/ghrelin/dopamine system components and key pituitary/proliferation markers was evaluated in GHomas after the first surgery. Univariate/multivariate regression studies were performed to identify association between variables. RESULTS: Eighty percent of patients harbor macroadenomas (63.8% with extrasellar growth). Associations between larger and more invasive GHomas with younger age, visual abnormalities, higher IGF1 levels, extrasellar/suprasellar growth, and/or cavernous sinus invasion were found. Higher GH1 and lower PRL/POMC/CGA/AVPR1B/DRD2T/DRD2L expression levels (P < .05) were associated with tumor invasiveness. Least Absolute Shrinkage and Selection Operator's penalized regression identified combinations of clinical and molecular features with areas under the curve between 0.67 and 0.82. Pre-operative therapy with DA or SSAs did not alter the expression of any of the markers analyzed except for DRD1/AVPR1B (up-regulated with DA) and FSHB/CRHR1 (down-regulated with SSAs). CONCLUSIONS: A specific combination of clinical/analytical/molecular variables was found to be associated with tumor invasiveness and growth capacity in GHomas. Pre-treatment with first-line drugs for acromegaly did not significantly modify the expression of the most relevant biomarkers in our association model. These findings provide valuable insights for risk stratification and personalized management of GHomas.


Assuntos
Acromegalia , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Invasividade Neoplásica , Humanos , Masculino , Feminino , Acromegalia/metabolismo , Pessoa de Meia-Idade , Adulto , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma/metabolismo , Adenoma/patologia , Idoso , Agonistas de Dopamina/uso terapêutico , Biomarcadores Tumorais/metabolismo , Somatostatina/análogos & derivados , Somatostatina/uso terapêutico , Hormônio do Crescimento Humano/metabolismo
4.
Antibiotics (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534655

RESUMO

The rise in antibiotic-resistant bacteria is a global health challenge. Due to their unique properties, metal oxide nanoparticles show promise in addressing this issue. However, optimizing these properties requires a deep understanding of complex interactions. This study incorporated data-driven machine learning to predict bacterial survival against lanthanum-doped ZnO nanoparticles. The effect of incorporation of lanthanum ions on ZnO was analyzed. Even with high lanthanum concentration, no significant variations in structural, morphological, and optical properties were observed. The antibacterial activity of La-doped ZnO nanoparticles against Gram-positive and Gram-negative bacteria was qualitatively and quantitatively evaluated. Nanoparticles induce 60%, 95%, and 55% bacterial death against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, respectively. Algorithms such as Multilayer Perceptron, K-Nearest Neighbors, Gradient Boosting, and Extremely Random Trees were used to predict the bacterial survival percentage. Extremely Random Trees performed the best among these models with 95.08% accuracy. A feature relevance analysis extracted the most significant attributes to predict the bacterial survival percentage. Lanthanum content and particle size were irrelevant, despite what can be assumed. This approach offers a promising avenue for developing effective and tailored strategies to reduce the time and cost of developing antimicrobial nanoparticles.

5.
Biomater Sci ; 12(8): 2108-2120, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38450552

RESUMO

The antioxidant capabilities of nanoparticles are contingent upon various factors, including their shape, size, and chemical composition. Herein, novel Nd-doped CeO2 nanoparticles were synthesized and the neodymium content was varied to investigate the synergistic impact on the antioxidant properties of CeO2 nanoparticles. Incorporating Nd3+ induced changes in lattice parameters and significantly altered the morphology from nanoparticles to nanorods. The biological activity of Nd-doped CeO2 was examined against pathogenic bacterial strains, breast cancer cell lines, and antioxidant models. The antibacterial and anticancer activities of nanoparticles were not observed, which could be associated with the Ce3+/Ce4+ ratio. Notably, the incorporation of neodymium improved the antioxidant capacity of CeO2. Machine learning techniques were employed to forecast the antioxidant activity to enhance understanding and predictive capabilities. Among these models, the random forest model exhibited the highest accuracy at 96.35%, establishing it as a robust computational tool for elucidating the biological behavior of Nd-doped CeO2 nanoparticles. This study presents the first exploration of the influence of Nd3+ on the structural, optical, and biological attributes of CeO2, contributing valuable insights and extending the application of machine learning in predicting the therapeutic efficacy of inorganic nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Antioxidantes/farmacologia , Antioxidantes/química , Neodímio , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química
6.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38397812

RESUMO

This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 µg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.

7.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257300

RESUMO

In 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.4%, and this rising tendency will increase yearly. Of this data, less than 2% correspond to bio-based plastics. Currently, polymers, including elastomers, are non-recyclable and come from non-renewable sources. Additionally, most elastomers are thermosets, making them complex to recycle and reuse. It takes hundreds to thousands of years to decompose or biodegrade, contributing to plastic waste accumulation, nano and microplastic formation, and environmental pollution. Due to this, the synthesis of elastomers from natural and renewable resources has attracted the attention of researchers and industries. In this review paper, new methods and strategies are proposed for the preparation of bio-based elastomers. The main goals are the advances and improvements in the synthesis, properties, and applications of bio-based elastomers from natural and industrial rubbers, polyurethanes, polyesters, and polyethers, and an approach to their circular economy and sustainability. Olefin metathesis is proposed as a novel and sustainable method for the synthesis of bio-based elastomers, which allows for the depolymerization or degradation of rubbers with the use of essential oils, terpenes, fatty acids, and fatty alcohols from natural resources such as chain transfer agents (CTA) or donors of the terminal groups in the main chain, which allow for control of the molecular weights and functional groups, obtaining new compounds, oligomers, and bio-based elastomers with an added value for the application of new polymers and materials. This tendency contributes to the development of bio-based elastomers that can reduce carbon emissions, avoid cross-contamination from fossil fuels, and obtain a greener material with biodegradable and/or compostable behavior.


Assuntos
Elastômeros , Plásticos , Polímeros , Borracha , Poliuretanos
8.
J Leukoc Biol ; 113(1): 1-10, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36822163

RESUMO

Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.


Assuntos
COVID-19 , Chaperona BiP do Retículo Endoplasmático , Humanos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Leucócitos Mononucleares/metabolismo , COVID-19/metabolismo , Chaperonas Moleculares/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático
9.
Neuropsychopharmacology ; 48(2): 341-350, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088492

RESUMO

Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine ß-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal ß-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.


Assuntos
Norepinefrina , Receptor CB1 de Canabinoide , Animais , Camundongos , Adrenérgicos/farmacologia , Encéfalo , Hipocampo , Norepinefrina/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
11.
Nefrologia (Engl Ed) ; 43(6): 742-749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38246811

RESUMO

OBJECTIVE: To evaluate the value of the provision of contracted versus hospital dialysis services for the treatment of chronic kidney disease in Spain using the multicriteria decision analysis methodology. METHOD: The EVIDEM (Evidence and Value: Impact on Decision Making) evaluation framework was used to calculate the estimated value of both dialysis delivery models (arranged vs. hospital) through a virtual workshop in which different profiles participated: directors and managers, professionals and heads of units and representatives of patients and relatives. The scores were combined using an additive lineal model, which combined the weight of the model with the individual score of the criteria, and each value was transformed to a scale between 0 and 1. RESULTS: The estimated value for arranged dialysis was 0.29 (DS: ±0.2) and 0.39 (DS: ±0.2) for hospital dialysis. All profiles gave a higher value to hospital hemodialysis compared to contracted hemodialysis. The highest value for hospital dialysis was for patients (0.44), with the lowest mean value for directors (0.36) and the range for arranged dialysis being between patients (0.31) and intermediate positions (0.27). CONCLUSIONS: Hospital hemodialysis obtained a higher value than concerted dialysis. In general, the panelists affirmed that it is a useful and interesting exercise and that, to a certain extent, it provides security in decision-making, since it allows ordering, rationalizing and considering, in an explicit and transparent manner, the different criteria involved.


Assuntos
Técnicas de Apoio para a Decisão , Insuficiência Renal Crônica , Humanos , Diálise Renal , Espanha
12.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433100

RESUMO

Biobased hydroxyl-terminated polybutadiene (HTPB) was successfully synthesized in a one-pot reaction via metathesis degradation of industrial rubbers. Thus, polybutadiene (PB) and poly(styrene-butadiene-styrene) (SBS) were degraded via metathesis with high yields (>94%), using the fatty alcohol 10-undecen-1-ol as a chain transfer agent (CTA) and the second-generation Grubbs−Hoveyda catalyst. The identification of the hydroxyl groups (-OH) and the formation of biobased HTPB were verified by FT-IR and NMR. Likewise, the molecular weight and properties of the HTPB were controlled by changing the molar ratio of rubber to CTA ([C=C]/CTA) from 1:1 to 100:1, considering a constant molar ratio of the catalyst ([C=C]/Ru = 500:1). The number average molecular weight (Mn) ranged between 583 and 6580 g/mol and the decomposition temperatures between 134 and 220 °C. Moreover, the catalyst optimization study showed that at catalyst loadings as low as [C=C]/Ru = 5000:1, the theoretical molecular weight is in good agreement with the experimental molecular weight and the expected diols and polyols are formed. At higher ratios than those, the difference between theoretical and experimental molecular weight is wide, and there is no control over HTPB. Therefore, the rubber/CTA molar ratio and the amount of catalyst play an important role in PB degradation and HTPB synthesis. Biobased HTPB can be used to synthesize engineering design polymers, intermediates, fine chemicals, and in the polyurethane industry, and contribute to the development of environmentally friendly raw materials.

13.
Sci Rep ; 12(1): 8979, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643771

RESUMO

Predicting which acromegaly patients could benefit from somatostatin receptor ligands (SRL) is a must for personalized medicine. Although many biomarkers linked to SRL response have been identified, there is no consensus criterion on how to assign this pharmacologic treatment according to biomarker levels. Our aim is to provide better predictive tools for an accurate acromegaly patient stratification regarding the ability to respond to SRL. We took advantage of a multicenter study of 71 acromegaly patients and we used advanced mathematical modelling to predict SRL response combining molecular and clinical information. Different models of patient stratification were obtained, with a much higher accuracy when the studied cohort is fragmented according to relevant clinical characteristics. Considering all the models, a patient stratification based on the extrasellar growth of the tumor, sex, age and the expression of E-cadherin, GHRL, IN1-GHRL, DRD2, SSTR5 and PEBP1 is proposed, with accuracies that stand between 71 to 95%. In conclusion, the use of data mining could be very useful for implementation of personalized medicine in acromegaly through an interdisciplinary work between computer science, mathematics, biology and medicine. This new methodology opens a door to more precise and personalized medicine for acromegaly patients.


Assuntos
Acromegalia , Neoplasias , Acromegalia/tratamento farmacológico , Acromegalia/terapia , Biomarcadores , Análise de Dados , Mineração de Dados , Humanos , Neoplasias/terapia , Medicina de Precisão
14.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562910

RESUMO

Unsaturated copolyesters are of great interest in polymer science due to their broad potential applications and sustainability. Copolyesters were synthesized from the ring-opening metathesis copolymerization of ω-6-hexadecenlactone (HDL) and norbornene (NB) using ruthenium-alkylidene [Ru(Cl2)(=CHPh)(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (Ru1), [Ru(Cl)2(=CHPh)(PCy3)2] (Ru2), and ruthenium-vinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (Ru3) catalysts, respectively, yielding HDL-NB copolymers with different ratios of the monomer HDL in the feed. The activity of N-heterocyclic-carbene (NHC) (Ru1) and phosphine (Ru2 and Ru3) ligands containing ruthenium-carbene catalysts were evaluated in the synthesis of copolymer HDL-NB. The catalysts Ru1 with an NHC ligand showed superior activity and stability over catalysts Ru2 and Ru3 bearing PCy3 ligands. The incorporation of the monomers in the copolymers determined by 1H-NMR spectroscopy was similar to that of the HDL-NB values in the feed. Experiments, at distinct monomer molar ratios, were carried out using the catalysts Ru1-Ru3 to determine the copolymerization reactivity constants by applying the Mayo-Lewis and Fineman-Ross methods. The copolymer distribution under equilibrium conditions was studied by the 13C NMR spectra, indicating that the copolymer HDL-NB is a gradient copolymer. The main factor determining the decrease in melting temperature is the inclusion of norbornene units, indicating that the PNB units permeate trough the HDL chains. The copolymers with different molar ratios [HDL]/[NB] have good thermal stability up to 411 °C in comparison with the homopolymer PHDL (384 °C). Further, the stress-strain measurements in tension for these copolymers depicted the appreciable increment in stress values as the NB content increases.


Assuntos
Rutênio , Cinética , Ligantes , Metano/análogos & derivados , Norbornanos/química , Polímeros/química , Rutênio/química
15.
J Clin Endocrinol Metab ; 107(7): e2938-e2951, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35312002

RESUMO

CONTEXT: Adrenocorticotropin (ACTH)-secreting pituitary tumors (ACTHomas) are associated with severe comorbidities and increased mortality. Current treatments mainly focus on remission and prevention of persistent disease and recurrence. However, there are still no useful biomarkers to accurately predict the clinical outcome after surgery, long-term remission, or disease relapse. OBJECTIVES: This work aimed to identify clinical, biochemical, and molecular markers for predicting long-term clinical outcome and remission in ACTHomas. METHODS: A retrospective multicenter study was performed with 60 ACTHomas patients diagnosed between 2004 and 2018 with at least 2 years' follow-up. Clinical/biochemical variables were evaluated yearly. Molecular expression profile of the somatostatin/ghrelin/dopamine regulatory systems components and of key pituitary factors and proliferation markers were evaluated in tumor samples after the first surgery. RESULTS: Clinical variables including tumor size, time until diagnosis/first surgery, serum prolactin, and postsurgery cortisol levels were associated with tumor remission and relapsed disease. The molecular markers analyzed were distinctly expressed in ACTHomas, with some components (ie, SSTR1, CRHR1, and MKI67) showing instructive associations with recurrence and/or remission. Notably, an integrative model including selected clinical variables (tumor size/postsurgery serum cortisol), and molecular markers (SSTR1/CRHR1) can accurately predict the clinical evolution and remission of patients with ACTHomas, generating a receiver operating characteristic curve with an area under the curve of 1 (P < .001). CONCLUSION: This study demonstrates that the combination of a set of clinical and molecular biomarkers in ACTHomas is able to accurately predict the clinical evolution and remission of patients. Consequently, the postsurgery molecular profile represents a valuable tool for clinical evaluation and follow-up of patients with ACTHomas.


Assuntos
Hipersecreção Hipofisária de ACTH , Doenças da Hipófise , Neoplasias Hipofisárias , Humanos , Hidrocortisona , Hipersecreção Hipofisária de ACTH/diagnóstico , Hipersecreção Hipofisária de ACTH/genética , Hipersecreção Hipofisária de ACTH/cirurgia , Hipófise/patologia , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/cirurgia , Recidiva , Indução de Remissão , Estudos Retrospectivos , Resultado do Tratamento
16.
Biomedicines ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203668

RESUMO

Acromegaly is caused by excess growth hormone (GH) produced by a pituitary tumor. First-generation somatostatin receptor ligands (SRLs) are the first-line treatment. Several studies have linked E-cadherin loss and epithelial-mesenchymal transition (EMT) with resistance to SRLs. Our aim was to study EMT and its relationship with SRLs resistance in GH-producing tumors. We analyzed the expression of EMT-related genes by RT-qPCR in 57 tumors. The postsurgical response to SRLs was categorized as complete response, partial response, or nonresponse if IGF-1 was normal, had decreased more than 30% without normalization, or neither of those, respectively. Most tumors showed a hybrid and variable EMT expression profile not specifically associated with SRL response instead of a defined epithelial or mesenchymal phenotype. However, high SNAI1 expression was related to invasive and SRL-nonresponsive tumors. RORC was overexpressed in tumors treated with SRLs before surgery, and this increased expression was more prominent in those cases that normalized postsurgical IGF-1 levels under SRL treatment. In conclusion, GH-producing tumors showed a heterogeneous expression pattern of EMT-related genes that would partly explain the heterogeneous response to SRLs. SNAI1 and RORC may be useful to predict response to SRLs and help medical treatment decision making.

17.
Nefrologia (Engl Ed) ; 42(6): 621-632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36914543

RESUMO

INTRODUCTION: Chronic kidney disease represents an important health problem, due to its high incidence and prevalence, as well as its significant morbidity and mortality and socioeconomic cost. AIMS: compare the effectiveness and economic consequences of outsourcing versus hospital dialysis. METHOD: A scoping review, for which different databases were consulted, using controlled and free terms. Those articles that compared concerted versus in hospital dialysis in terms of effectiveness were included. Likewise, those publications that compared, in the Spanish field, the cost between both modes of service provision and the public price rates of the different Autonomous Communities were included. RESULTS: 11 articles were included in this review: 8 on comparison of effectiveness, all of them in the USA, and 3 on costs. A higher rate of hospitalization was observed in subsidized centers, but no differences in mortality were observed. Additionally, greater competition among providers was associated with lower hospitalization rates. The cost studies reviewed show that hospital hemodialysis is more expensive than in subsidized centers, due to the structural costs. The data of the public rates of the different Autonomous Communities show a wide heterogeneity in the payment of the concerts. CONCLUSIONS: the coexistence in Spain of public and subsidized centers, the variability in the provision and costs of dialysis techniques, and the low of evidence on the effectiveness of outsourcing treatment show all the need to continue promoting strategies that result in improvement in the care for Chronic Kidney Disease.


Assuntos
Serviços Terceirizados , Insuficiência Renal Crônica , Humanos , Diálise Renal/métodos , Insuficiência Renal Crônica/terapia , Hospitalização , Encaminhamento e Consulta
18.
Pathol Res Pract ; 223: 153478, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022683

RESUMO

PURPOSE: Hedgehog (Hh) signaling is a crucial developmental regulatory pathway recognized as a primary oncogenesis driver in various human cancers. However, its role in breast carcinoma (BC) has been underexplored. METHODS: We analyzed the expression of several Hh associated genes in a clinical series and breast cancer cell lines. We included 193 BC stratified according to intrinsic immunophenotypes. Gene expression profiling ofBOC, PTCH, SMO, GLI1, GLI2, and GLI3 was performed by qRT-PCR. Results were correlated with clinical-pathological variables and outcome. RESULTS: We observed expression ofGLI2 in triple-negative/basal-like (TN/BL) and GLI3 in luminal cells. In samples, BOC, GLI1, GLI2, and GLI3 expression correlated significantly with luminal tumors and good prognostic factors. In contrast, PTCH and SMO correlated with TN/BL phenotype and nodal involvement. Patients whose tumors expressed SMO had a poorer outcome, especially those with HER2 phenotype. Positive lymph-node status and high SMO remained independent poor prognostic factors. CONCLUSION: Our results support a differential Hh pathway activation in BC phenotypes.SMO levels stratified patients at risk of recurrence and death in HER2 phenotype, and it showed an independent prognostic value. Therefore, SMO could be a potential therapeutic target for a subset of BC patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Proteínas Hedgehog/genética , Receptor Smoothened/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Intervalo Livre de Progressão , Estudos Retrospectivos , Transdução de Sinais , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
19.
Clin Transl Med ; 11(2): e304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634999

RESUMO

BACKGROUND: Several genetic alterations have been identified as driver events in chronic lymphocytic leukemia (CLL) pathogenesis and oncogenic evolution. Concurrent driver alterations usually coexist within the same tumoral clone, but how the cooperation of multiple genomic abnormalities contributes to disease progression remains poorly understood. Specifically, the biological and clinical consequences of concurrent high-risk alterations such as del(11q)/ATM-mutations and del(17p)/TP53-mutations have not been established. METHODS: We integrated next-generation sequencing (NGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 techniques to characterize the in vitro and in vivo effects of concurrent monoallelic or biallelic ATM and/or TP53 alterations in CLL prognosis, clonal evolution, and therapy response. RESULTS: Targeted sequencing analysis of the co-occurrence of high-risk alterations in 271 CLLs revealed that biallelic inactivation of both ATM and TP53 was mutually exclusive, whereas monoallelic del(11q) and TP53 alterations significantly co-occurred in a subset of CLL patients with a highly adverse clinical outcome. We determined the biological effects of combined del(11q), ATM and/or TP53 mutations in CRISPR/Cas9-edited CLL cell lines. Our results showed that the combination of monoallelic del(11q) and TP53 mutations in CLL cells led to a clonal advantage in vitro and in in vivo clonal competition experiments, whereas CLL cells harboring biallelic ATM and TP53 loss failed to compete in in vivo xenotransplants. Furthermore, we demonstrated that CLL cell lines harboring del(11q) and TP53 mutations show only partial responses to B cell receptor signaling inhibitors, but may potentially benefit from ATR inhibition. CONCLUSIONS: Our work highlights that combined monoallelic del(11q) and TP53 alterations coordinately contribute to clonal advantage and shorter overall survival in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Deleção Cromossômica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Prognóstico
20.
Biochim Biophys Acta Gen Subj ; 1865(5): 129854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497735

RESUMO

BACKGROUND: In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS: The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS: The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS: The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE: The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Evolução Molecular , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA