Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Placenta ; 140: 72-79, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37549439

RESUMO

INTRODUCTION: The future health of the offspring can be influenced by longstanding maternal anxiety and depression disorders during pregnancy. The present study aimed to explore the effect of psychiatric disorders during pregnancy on placental epigenetics. METHODS: We measured DNA methylation patterns in term-placentas of women either suffering longstanding anxiety and depression symptoms (Index group, with overt symptoms), or a healthy population (Control, none/only mild symptoms). Whole genome DNA methylation profiling was performed using the TruSeq® Methyl Capture EPIC Library Prep Kit (Illumina, San Diego, CA, USA) for library preparation and NGS technology for genomic DNA sequencing. RESULTS: The results of high-throughput DNA methylation analysis revealed that the Index group had differential DNA methylation at epigenome-wide significance (p < 0.05) in 226 genes in the placenta. Targeted enrichment analyses identified hypermethylation of genes associated with psychiatric disorders (BRINP1, PUM1), and ion homeostasis (COMMD1), among others. The ECM (extracellular matrix)-receptor interaction pathway was significantly dysregulated in the Index group compared to the Control. In addition, DNA methylation/mRNA integration analyses revealed that four genes with key roles in neurodevelopment and other important processes (EPB41L4B, BMPR2, KLHL18, and UBAP2) were dysregulated at both, DNA methylation and transcriptome levels in the Index group compared to Control. DISCUSSION: The presented results increase our understanding of how maternal psychiatric disorders may affect the newborn through placental differential epigenome, suggesting DNA methylation status as a biomarker when aiming to design new preventive techniques and interventions.


Assuntos
Depressão , Placenta , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Depressão/genética , Epigênese Genética , Metilação de DNA , Ansiedade/genética , Proteínas de Ligação a RNA/metabolismo
2.
Theriogenology ; 206: 1-10, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148716

RESUMO

The most commonly used technique to vitrify pig embryos is the super open pulled straw (SOPS), where a maximum of 6 embryos can be vitrified simultaneously per device without compromising the minimum volume necessary for optimal preservation. Since optimal embryo transfer (ET) demands a transfer of 20-40 embryos per recipient, the customary use of SOPS complicates embryo warming and ET in field conditions. Such complications could be avoided when using the Cryotop® (OC) system, which has been proven to be an effective option for vitrifying at least 20 porcine embryos simultaneously. This study aimed to investigate the changes in the transcriptome of blastocysts caused by vitrification using both systems. In vivo-derived blastocysts were OC- (n = 60; 20 embryos/device) and SOPS- (n = 60; 4-6 embryos/device) vitrified and cultured for 24 h after warming. Nonvitrified blastocysts (n = 60) cultured for 24 h postcollection acted as controls. At the end of culture, 48 viable embryos from each group (6 pools of 8 embryos) were selected for microarray (GeneChip® Porcine Genome Array, P/N 900624, Affymetrix) analysis of differentially expressed genes (DEGs). The survival rate of embryos vitrified with the OC and SOPS systems (>97%) was similar to that of the control embryos (100%). Microarray analysis of each vitrification system compared to the control group showed 245 DEGs (89 downregulated and 156 upregulated) for the OC system and 210 (44 downregulated and 166 upregulated) for the SOPS system. Two pathways were enriched for the DEGs specifically altered in each vitrification system compared to the control (glycolysis/gluconeogenesis and carbon metabolism pathways for the OC system and amino sugar and nucleotide sugar metabolism and lysosome pathways in the SOPS group). The OC group showed 31 downregulated and 24 upregulated genes and two enriched pathways (mineral absorption and amino sugar and nucleotide sugar metabolism pathways) when compared to the SOPS group. In summary, vitrification with the OC system altered fewer genes related to apoptosis and activated genes related to cell proliferation. We conclude that vitrification with either the OC or SOPS system has a moderate to low effect on the transcriptome of in vivo-derived porcine blastocysts. Further investigation is needed to elucidate how the differences in the transcriptome of embryos vitrified with these systems affect their subsequent developmental ability after ET.


Assuntos
Criopreservação , Vitrificação , Suínos , Animais , Criopreservação/veterinária , Criopreservação/métodos , Taxa de Sobrevida , Blastocisto , Expressão Gênica , Nucleotídeos
3.
Animals (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174605

RESUMO

The combination of estrus synchronization and superovulation (SS) treatments causes alterations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte growth, fertilization, and embryo development. However, the impact of combined SS treatments on the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6), sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6), ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination, the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was performed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold change 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each pathway was minimal. Only four pathways were disrupted comprising only a total of four altered transcripts, which were not related to reproductive functions or embryonic development. On the other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of 10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos' response to oxidative stress, thereby impairing subsequent embryo development. The gene expression changes observed in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect fertilization, embryo production, and reproductive tract gene expression, make its use in embryo transfer programs unrecommendable.

4.
Theriogenology ; 205: 87-93, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105091

RESUMO

Mammalian follicles are constituted of a complex structure composed of several layers of granulosa cells surrounding the oocyte and of theca cells that reside beneath its basement membrane. During folliculogenesis, granulosa cells separate into two anatomically and functionally distinct sub-types; the mural cells lining the follicle wall and the oocyte-surrounding cumulus cells, i.e. those in intimate metabolic contact with the oocyte. The cumulus cells connecting with the oocyte have trans-zonal cytoplasmic projections which, penetrating the zona pellucida, form the cumulus-oocyte complex. The connections through gap junctions allow the transfer of small molecules between oocyte and cumulus cells, such as ions, metabolites, and amino acids necessary for oocyte growth, as well as small regulatory molecules that control oocyte development. The bi-directional communication between the oocyte and cumulus cells is crucial for the development and functions of both cell types. Our current knowledge of the relationship between the oocyte and its surrounding cumulus cells continues to change as we gain a greater understanding of factors regulating oocyte development and folliculogenesis. This review will mainly focus on the reciprocal interaction between oocytes and cumulus cells during the latter stages of follicle development i.e. through antral development to periovulatory events including oocyte maturation, expansion, and degradation of the cumulus matrix.


Assuntos
Células do Cúmulo , Oócitos , Feminino , Animais , Células do Cúmulo/metabolismo , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Células da Granulosa/fisiologia , Oogênese , Mamíferos
5.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169657

RESUMO

The combination of estrus synchronization and superovulation treatments introduces molecular modifications whose effects are yet to be disclosed. Here, reproductive parameters and gene expression changes in ovaries and endometrium were explored on day 6 after artificial insemination (AI), when synthetic progestin altrenogest (ALT) was combined with gonadotropins. Sows were administered ALT for 7 d beginning on the day of weaning and superovulated with equine chorionic gonadotropin (eCG) 24 h later and human chorionic gonadotropins (hCG) at the onset of estrus (SS-7 group; n = 6). The controls were either superovulated sows with eCG 24 h postweaning and hCG at the onset of estrus (SC group; n = 6) or sows with postweaning spontaneous estrus (NC group; n = 6). Ovary examination and embryo and tissue collection were performed in all sows via laparotomy on day 6 post-AI. RNA-Seq was conducted to analyze differentially expressed genes (DEGs) between groups. Statistical analysis of the reproductive parameters was conducted with ANOVA and Tukey post hoc tests. DEGs were analyzed with an ANOVA (fold changes ≥2 or ≤2, P value <0.05). Hormonal treatments almost doubled (P < 0.03) the number of corpora lutea (39.8 ± 10.2 and 38.3 ± 11.1 in SS-7 and SC sows, respectively) compared with that in the NC group (23.1 ± 3.8). In contrast, embryo viability significantly decreased (P < 0.003) in response to SS-7 treatment (75.1% ± 15.2%) compared to SC and NC groups (93.8 ± 7.6% and 91.8 ± 6.9%, respectively). RNA-Seq analyses revealed 675 and 1,583 DEGs in the SS-7 group compared to both SC and NC groups in endometrial and ovarian samples, respectively. Interestingly, many genes with key roles in the Wnt/ß-catenin and Notch signaling pathways were differentially expressed in SS-7 sows relative to SC and NC groups (e.g., Ctnnb1, Myc, Gli3, Scyl2, Ccny, Daam1, Ppm1n, Rbpj, and Usp8). A key finding in this study was the downregulation of ß-catenin (Ctnnb1) gene expression in the SS-7 endometrium, suggesting that this treatment influences embryo-uterine dialogue by triggering a cascade of events leading to embryo maldevelopment. These data explain the proliferative defects in SS-7 embryos and suggest a novel mechanism of a porcine embryo-maternal crosstalk.


Methods for porcine superovulation (increasing the number of ovulated oocytes per cycle) and estrus synchronization (grouping estrus sows on the same day) are available for assisted reproductive technologies, using hormonal treatments. The main goal of the present study was to understand how hormones used for these purposes influence gene expression patterns in the female reproductive tract (ovaries and endometrium). We observed that hormonal treatments (synchronization combined with superovulation) have the potential to alter ovarian and endometrial gene expression patterns, triggering improper follicle development and oocyte growth, and leading to abnormal embryonic development before implantation. Genes involved in two key metabolic pathways for embryo development (Wnt/ß-catenin and Notch signaling pathways) were dysregulated in reproductive tissues.


Assuntos
Superovulação , beta Catenina , Animais , Feminino , Humanos , Gonadotropina Coriônica/farmacologia , Regulação para Baixo , Endométrio , Gonadotropinas Equinas , Cavalos , Superovulação/fisiologia , Suínos , Via de Sinalização Wnt , Receptores Notch/metabolismo
6.
Front Vet Sci ; 9: 936753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812891

RESUMO

The Superfine Open Pulled Straw (SOPS) system is the most commonly used method for vitrification of pig embryos. However, this system only allows the vitrification of four to seven embryos per straw. In this study, we investigated the effectiveness of the open (OC) and closed (CC) Cryotop® systems to simultaneously vitrify a larger number of porcine embryos. Morulae, early blastocysts and full blastocysts were vitrified with the open Cryotop® (n = 250; 20 embryos per device) system, the closed Cryotop® (n = 158; 20 embryos per device) system and the traditional superfine open pulled straw (SOPS; n = 241; 4-7 embryos per straw) method. Fresh embryos from each developmental stage constituted the control group (n = 132). Data expressed as percentages were compared with the Fisher's exact test. The Kruskal-Wallis test was used to analyze the effect of the different vitrification systems on the embryo quality parameters and two-by-two comparisons were accomplished with the Mann-Whitney U test. Differences were considered statistically significant when p < 0.05. Vitrified and control embryos were incubated for 24 h and examined for viability and quality. At the warming step, the embryo recovery rate for the CC system was 51%, while all embryos were recovered when using OC and SOPS. There were no differences between the vitrification and control groups in the postwarming viability of full blastocysts. In contrast, morulae and early blastocysts that were vitrified-warmed with the SOPS system had lower viability (p < 0.01) compared to those from the OC, CC and control groups. The embryonic viability was similar between the OC and control groups, regardless of the developmental stage considered. Moreover, the embryos from the OC group had comparable total cell number and cells from the inner cell mass and apoptotic index than the controls. In conclusion, the OC system is suitable for the simultaneous vitrification of 20 porcine embryos at different developmental stages and provides comparable viability and quality results to fresh embryos subjected to 24 h of in vitro culture.

7.
Antioxidants (Basel) ; 11(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740074

RESUMO

Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.

8.
Reprod Domest Anim ; 57 Suppl 5: 58-63, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35567517

RESUMO

The aims of this study were to investigate the effects of different equilibration times with cryoprotectants on viability and metaphase plate morphology of vitrified-warmed porcine mature oocytes (Experiment 1) and to evaluate the effects of supplementation with 10-9 M melatonin during in vitro maturation on these parameters (Experiment 2). In Experiment 1, 2,392 mature oocytes were vitrified using different equilibration times of oocytes with cryoprotectants (3, 10, 15, 20, 30, 40, 60 and 80 min). Fresh oocytes matured in vitro for 44 hr (n = 509) were used as controls. In Experiment 2, a total of 573 COCs were used. COCs were matured with 10-9 M melatonin supplementation or without melatonin (control). Some oocytes from each group were vitrified with a 60-min equilibration time with cryoprotectants according to the results of Experiment 1. The remaining oocytes from each maturation group were used as fresh control groups. In both experiments, oocytes were stained with 2',7'-dichlorodihydrofuorescein diacetate and Hoechst 33342 to assess viability and metaphase plate morphology, respectively. Vitrification and warming affected (p < .01) oocyte viability compared with controls, which were all viable after 44 hr of IVM. In Experiment 1, the longer the equilibration time with cryoprotectants, the higher the viability. Oocytes equilibrated for 60 and 80 min had the highest (p < .05) viability and similar metaphase plate characteristics to the fresh control oocytes. In Experiment 2, supplementation with melatonin during in vitro maturation had no effect on oocyte viability or metaphase plate morphology of vitrified-warmed oocytes. In conclusion, under our experimental conditions, vitrified porcine mature oocytes equilibrated with cryoprotectants for 60 or 80 min exhibited the highest viability and similar metaphase plate characteristics to fresh controls. Furthermore, supplementation with 10-9 M melatonin during in vitro maturation had no effect on these parameters.


Assuntos
Melatonina , Animais , Criopreservação/métodos , Criopreservação/veterinária , Crioprotetores/farmacologia , Suplementos Nutricionais , Melatonina/farmacologia , Metáfase , Oócitos , Suínos , Vitrificação
9.
Biology (Basel) ; 11(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35453814

RESUMO

Uterine homeostasis is maintained after mating by eliminating pathogens, foreign cells, and proteins by a transient inflammation of the uterus. Such inflammation does not occur in the oviductal sperm reservoir (utero-tubal junction, UTJ), colonized by a population of potentially fertile spermatozoa before the inflammatory changes are triggered. Semen entry (spermatozoa and/or seminal plasma) modifies the expression of regulatory genes, including cell proliferation and differentiation-related transcripts. Considering pigs display a fractionated ejaculation, this study aims to determine whether different ejaculate fractions differentially modulate cell proliferation and differentiation-related transcripts in the sow reproductive tract during the peri-ovulatory stage. Using species-specific microarray analyses, the differential expression of 144 cell proliferation and differentiation-related transcripts was studied in specific segments: cervix (Cvx), distal and proximal uterus (DistUt, ProxUt), UTJ, isthmus (Isth), ampulla (Amp), and infundibulum (Inf) of the peri-ovulatory sow reproductive tract in response to semen and/or seminal plasma cervical deposition. Most mRNA expression changes were induced by mating. In addition, while mating upregulates the fibroblast growth factor 1 (FGF1, p-value DistUt = 0.0007; ProxUt = 0.0253) transcript in the endometrium, both its receptor, the fibroblast growth factor receptor 1 (FGFR1, p-value DistUt = 2.14 e-06; ProxUt = 0.0027; UTJ = 0.0458) transcript, and a potentiator of its biological effect, the fibroblast growth factor binding protein 1 (FGFBP1), were downregulated in the endometrium (p-value DistUt = 0.0068; ProxUt = 0.0011) and the UTJ (p-value UTJ = 0.0191). The FGFBP1 was downregulated in the whole oviduct after seminal depositions (p-value Isth = 0.0007; Amp = 0.0007; Inf = 6.87 e-05) and, interestingly, FGFR1 was downregulated in the endometrium in the absence of semen (p-value DistUt = 0.0097; ProxUt = 0.0456). In conclusion, the findings suggest that spermatozoa, seminal components, and the act of mating trigger, besides inflammation, differential mechanisms in the peri-ovulatory female reproductive tract, relevant for tissue repair.

10.
Animals (Basel) ; 12(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454259

RESUMO

Sperm capacitation is a stepwise complex biochemical process towards fertilization. It includes a crucial early calcium (Ca2+) transport mediated by CatSper channels and Canonical Transient Potential Channels (TRPC). We studied the relative abundance of mRNA transcripts changes of the CatSper ß, γ and δ subunits and TRPC-channels 1, 3, 4, 6 and 7 in pig spermatozoa, after triggering in vitro capacitation by bicarbonate ions at levels present in vivo at the fertilization site. For this purpose, we analyzedfive5 ejaculate pools (from three fertile adult boars) before (control-fresh samples) and after in vitro exposure to capacitation conditions (37 mM NaHCO3, 2.25 mM CaCl2, 2 mM caffeine, 0.5% bovine serum albumin and 310 mM lactose) at 38 °C, 5% CO2 for 30 min. In vitro capacitation using bicarbonate elicits an increase in the relative abundance of mRNA transcripts of almost all studied Ca2+ channels, except CatSper-δ and TRPC1 (significantly reduced). These findings open new avenues of research to identify the specific role of each channel in boar sperm capacitation and elucidate the physiological meaning of the changes on sperm mRNA cargo.

11.
Reprod Domest Anim ; 57 Suppl 5: 78-81, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35467055

RESUMO

Artificial insemination (AI) for pigs relies on liquid storage of extended semen at 17°C, which preserves sperm quality and ensures its fertilizing capacity. Routine quality controls include the evaluation of sperm motility, viability and capacitation status. The physiological functions of all these features depend on transmembrane aquaporins (AQPs), proteins playing key roles in osmoadaptation. In this study, we made a relative quantification, using RT-qPCR, of the mRNA of several sperm AQPs in AI-liquid semen doses before and after a 48-hr incubation period, aiming to determine possible quantitative compromising expression changes during the process that could serve as a diagnostic tool. Our results showed a decrease in classical sperm motility variables (total and progressive motility and velocity) and sperm viability after 48-hr storage, whereas capacitation status increased overtime. mRNA expression increased in the orthodox AQP4 and AQP6 after 48-hr incubation, relative to control (0 hr) and 24-hr time-points. Moreover, mRNA expression of aquaglyceroporins AQP3, AQP7 and AQP10 was higher after 48-hr incubation, confirmed by AQP7-protein validation using Western blot. Our results indicate that expression levels of AQPs-mRNA can change in ejaculated pig spermatozoa under conditions of ex-vivo incubation that could modify sperm homeostasis, suggesting it could eventually become a relevant molecular biomarker to assess the efficiency of liquid storage of pig semen.


Assuntos
Aquagliceroporinas , Aquaporinas , Preservação do Sêmen , Animais , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Biomarcadores/metabolismo , Masculino , RNA Mensageiro/metabolismo , Sêmen/metabolismo , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Suínos
12.
Biology (Basel) ; 11(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35205102

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs (20-25 nucleotides in length) capable of regulating gene expression by binding -fully or partially- to the 3'-UTR of target messenger RNA (mRNA). To date, several studies have investigated the role of sperm miRNAs in spermatogenesis and their remaining presence toward fertilization and early embryo development. However, little is known about the miRNA cargo in the different sperm sources and their possible implications in boar fertility. Here, we characterized the differential abundance of miRNAs in spermatozoa from the terminal segment of the epididymis and three different fractions of the pig ejaculate (sperm-peak, sperm-rich, and post-sperm rich) comparing breeding boars with higher (HF) and lower (LF) fertility after artificial insemination (AI) using high-output small RNA sequencing. We identified five sperm miRNAs that, to our knowledge, have not been previously reported in pigs (mir-10386, mir-10390, mir-6516, mir-9788-1, and mir-9788-2). Additionally, four miRNAs (mir-1285, mir-92a, mir-34c, mir-30), were differentially expressed among spermatozoa sourced from ejaculate fractions and the cauda epididymis, and also different abundance was found between HF and LF groups in mir-182, mir-1285, mir-191, and mir-96. These miRNAs target genes with key roles in fertility, sperm survival, immune tolerance, or cell cycle regulation, among others. Linking the current findings with the expression of specific sperm proteins would help predict fertility in future AI-sires.

13.
Biol Reprod ; 106(3): 449-462, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935902

RESUMO

During pregnancy, the immune system is modified to allow developmental tolerance of the semi-allogeneic fetus and placenta to term. Pregnant women suffering from stress, anxiety, and depression show dysfunctions of their immune system that may be responsible for fetal and/or newborn disorders, provided that placental gene regulation is compromised. The present study explored the effects of maternal chronic self-perceived stress, anxiety, and depression during pregnancy on the expression of immune-related genes and pathways in term placenta. Pregnancies were clinically monitored with the Beck Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 divided patients into two groups: Index group (>10, n = 11) and a Control group (<10, n = 11), whose placentae were sampled at delivery. The placental samples were subjected to RNA-Sequencing, demonstrating that stress, anxiety, and depression during pregnancy induced a major downregulation of placental transcripts related to immune processes such as T-cell regulation, interleukin and cytokine signaling, or innate immune responses. Expression differences of main immune-related genes, such as CD46, CD15, CD8α & ß ILR7α, and CCR4 among others, were found in the Index group (P < 0.05). Moreover, the key immune-like pathway involved in humoral and cellular immunity named "Primary immunodeficiency" was significantly downregulated in the Index group compared with Controls. Our results show that mechanisms ruling immune system functions are compromised at the maternal-fetal interface following self-perceived depressive symptoms and anxiety during pregnancy. These findings may help unveil mechanisms ruling the impact of maternal psychiatric symptoms and lead to new prevention/intervention strategies in complicated pregnancies.


Assuntos
Depressão , Placenta , Ansiedade , Depressão/metabolismo , Feminino , Humanos , Imunidade , Recém-Nascido , Placenta/metabolismo , Gravidez , Gestantes/psicologia
14.
Front Vet Sci ; 8: 771996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869745

RESUMO

Despite the reported promising farrowing rates after non-surgical and surgical transfers of vitrified porcine morulae and blastocysts produced in vivo (range: 70-75%), the pregnancy loss is 5-15 fold higher with vitrified than with fresh embryos. The present study aimed to investigate whether vitrification affects the transcriptome of porcine morulae, using microarrays and RT-qPCR validation. Morulae were obtained surgically from weaned sows (n = 13) on day 6 (day 0 = estrus onset). A total of 60 morulae were vitrified (treatment group). After 1 week of storage, the vitrified morulae were warmed. Vitrified-warmed and non-vitrified fresh morulae (control; n = 40) were cultured for 24 h to assess embryo survival by stereomicroscopy after. A total of 30 vitrified/warmed embryos that were deemed viable and 30 fresh control embryos (three pools of 10 for each experimental group) were selected for microarray analysis. Gene expression was assessed with a GeneChip® Porcine Genome Array (Affymetrix). An ANOVA analysis p-unadjusted <0.05 and a fold change cut-off of ±1.5 were set to identify differentially expressed genes (DEGs). Data analysis and biological interpretation were performed using the Partek Genomic Suite 7.0 software. The survival rate of morulae after vitrification and warming (92.0 ± 8.3%) was similar to that of the control (100%). A total of 233 DEGs were identified in vitrified morulae (38 upregulated and 195 downregulated), compared to the control group. Nine pathways were significantly modified. Go-enrichment analysis revealed that DEGs were mainly related to the Biological Process functional group. Up-regulated DEGs were involved in glycosaminoglycan degradation, metabolic pathways and tryptophan metabolism KEGG pathways. The pathways related to the down-regulated DEGs were glycolysis/gluconeogenesis, protein export and fatty acid elongation. The disruption of metabolic pathways in morulae could be related to impaired embryo quality and developmental potential, despite the relatively high survival rates after warming observed in vitro. In conclusion, vitrification altered the gene expression pattern of porcine morulae produced in vivo, generating alterations in the transcriptome that may interfere with subsequent embryo development and pregnancy after embryo transfer.

15.
Res Vet Sci ; 141: 195-202, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763256

RESUMO

Oxidative stress unbalance is a major factor causing impairment of sperm function and, ultimately, sperm death. In this study, we identified transcriptomic and proteomic markers for oxidative-related protectors from the generation of reactive oxygen species (ROS) in spermatozoa from breeding boars with documented high- or low-fertility. Particular attention was paid to glutathione peroxidases, and to transcripts related to DNA stabilization and compaction, as protamine and transition proteins. mRNA cargo analysis was performed using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST) and qPCR validation. Differences between fertility-classed boars were ample among biomarkers; some upregulated only at protein level (catalase (CAT), superoxide dismutase 1 (SOD1) and glutathione proteins), or only at the mRNA level (ATOX1, Antioxidant Protein 1). In addition, protamines 2 and 3, essential for sperm DNA condensation and also transition proteins 1 and 2 (TNP1 and TNP2), required during histone-to-protamine replacement, were overexpressed in spermatozoa from high-fertile boars. This up-regulation seems concerted to reduce DNA accessibility to ROS attack, protecting the DNA. The upregulated intracellular phospholipid hydroperoxide glutathione peroxidase (GPx4), in high-fertile boars at mRNA level, can be considered a most relevant biomarker for fertility disclosure during sperm evaluation.


Assuntos
Fertilidade , Proteômica , Animais , Biomarcadores/metabolismo , Fertilidade/genética , Masculino , Estresse Oxidativo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatozoides/metabolismo , Suínos
16.
Biology (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671276

RESUMO

Seminal plasma (SP) in the female genital tract induces changes that affect multiple reproductive processes. One of the active components in SP is the transforming growth factor ß1 (TGF-ß1), which has major roles in embryo development and pregnancy. Embryo transfer (ET) technology is welcomed by the pig industry provided that embryo quality at embryo collection as well as the fertility and prolificacy of the recipients after the ET is increased. This study evaluated different intrauterine infusion treatments at estrus (40 mL of SP, TGF-ß1 cytokine in the extender, or the extender alone (control)) by mimicking an ET scenario in so-called "donor" (inseminated) and "recipient" (uninseminated) sows. On day 6 (day 0-onset of estrus), all "donors" were laparotomized to determine their pregnancy status (presence and developmental stage of the embryos). In addition, endometrial explants were collected from pregnant "donors" and cyclic "recipients," incubated for 24 h, and analyzed for cytokine production. SP infusions (unlike TGF-ß1 infusions) positively influenced the developmental stage of day 6 embryos. Infusion treatments differentially influenced the endometrial cytokine production, mainly in donors. We concluded that SP infusions prior to AI not only impacted the porcine preimplantation embryo development but also influenced the endometrial cytokine production six days after treatment, both in donors and recipients.

17.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513717

RESUMO

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGß, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


Assuntos
Blastocisto/metabolismo , Criopreservação/métodos , Embrião de Mamíferos/embriologia , Suínos/embriologia , Suínos/metabolismo , Transcriptoma/genética , Vitrificação , Animais , Ciclo Celular/genética , Senescência Celular/genética , Transferência Embrionária , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Redes Reguladoras de Genes , Sistema de Sinalização das MAP Quinases/genética , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Suínos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Animals (Basel) ; 11(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440865

RESUMO

Successful internal fertilization in mammals depends on several mechanisms, including those triggering the so-called "sperm attraction" towards the oocyte, which include some oocyte-derived sperm chemoattractants and interactive protein complexes, such as the cytokine C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12-CXCR4) receptor complex. The presence and precise localization of these crucial proteins was determined hereby, for the first time, in porcine cumulus-oocyte complexes (COCs) and spermatozoa. CXCL12 was overexpressed in the cumulus cells of in vitro matured, compared to immature COCs (p < 0.05), with its receptor (CXCR4) being up-regulated in capacitated spermatozoa (p < 0.03) compared to uncapacitated spermatozoa. The CXCR4 appeared specifically localized in the sperm tail of non-capacitated spermatozoa and also in the sperm head of capacitated spermatozoa, suggesting that the CXCL12-CXCR4 signaling complex would play a pivotal role in attracting capacitated spermatozoa towards the oocyte, facilitating fertilization in pigs.

19.
Animals (Basel) ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255666

RESUMO

The maternal environment modulates immune responses to facilitate embryo development and ensure pregnancy. Unraveling this modulation could improve the livestock breeding systems. Here it is hypothesized that the exposure of the female rabbit reproductive tract to semen, as well as to early embryos, modulates inflammation and angiogenesis among different tissue segments. qPCR analysis of the gene expression changes of the anti-inflammatory interleukin-10 (IL10) and transforming growth factor beta family (TGFß1-3) and the angiogenesis mediator vascular endothelial growth factor (VEGF-A) were examined in response to mating or insemination with sperm-free seminal plasma (SP). Reproductive tract segment (cervix to infundibulum) samples were obtained in Experiment 1, 20 h after gonadotropin-releasing hormone (GnRH) stimulation (control), natural mating (NM) or vaginal infusion with sperm-free SP (SP-AI). Additionally, segmented samples were also obtained at 10, 24, 36, 68 or 72 h after GnRH-stimulation and natural mating (Experiment 2). The results of gene expression, analyzed by quantitative PCR, showed that NM effects were mainly localized in the uterine tissues, depicting clear temporal variation, while SP-AI effects were restricted to the oviduct. Changes in anti-inflammatory and angiogenesis mediators indicate an early response in the uterus and a late modulation in the oviduct either induced by semen or preimplantation embryos. This knowledge could be used in the implementation of physiological strategies in breeding systems to face the new challenges on rabbit productivity and sustainability.

20.
Front Vet Sci ; 7: 611598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330727

RESUMO

Despite its advantages for pig breeding, embryo transfer (ET) has a major handicap: high embryo mortality during the pre- and implantation period, probably caused by divergent phenomena of tolerance between the immunologically unrelated (i.e., allogeneic) embryos and the recipient sow. Thus, to reach a similar maternal tolerance as in conventional breeding by artificial insemination (AI) would be the key to ET-success. For this reason, we studied the expression of the leukemia inhibitory factor (LIF) cytokine and its receptor in the pig endometrium during the implantation period (days 18 and 24) in sows subjected to ET (AL group) vs. post-cervical-AI controls (Hemi-AL group). Quantification of expression was performed at both mRNA (rt-qPCR) and protein (WB) levels. The expression of endometrial LIF on day 24 was considerably lower in ET than in AI pregnancies. Correlations between endometrial mRNA levels of LIF and LIF-R showed that, contrary to early AI-pregnancies, ET-pregnancies lack an inverse relation between cytokine and receptor levels. In conclusion, ET-pregnancies lack sufficient endometrial levels of LIF to develop adequate immunotolerance mechanisms to prevent the rejection of allogeneic ET-embryos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA