Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Mol Cell ; 70(6): 1101-1110.e4, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910112

RESUMO

Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Gammainfluenzavirus/genética , Gammainfluenzavirus/ultraestrutura , RNA Polimerases Dirigidas por DNA/fisiologia , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Capuzes de RNA/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral
3.
Cell Rep ; 23(7): 2119-2129.e3, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768209

RESUMO

Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Cães , Humanos , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Pressão Osmótica , Processamento Pós-Transcricional do RNA , Sítio de Iniciação de Transcrição , Terminação da Transcrição Genética , Proteínas não Estruturais Virais/metabolismo
4.
J Virol ; 90(13): 6014-6021, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099314

RESUMO

UNLABELLED: Influenza viruses subvert the transcriptional machinery of their hosts to synthesize their own viral mRNA. Ongoing transcription by cellular RNA polymerase II (Pol II) is required for viral mRNA synthesis. By a process known as cap snatching, the virus steals short 5' capped RNA fragments from host capped RNAs and uses them to prime viral transcription. An interaction between the influenza A virus RNA polymerase and the C-terminal domain (CTD) of the large subunit of Pol II has been established, but the molecular details of this interaction remain unknown. We show here that the influenza virus ribonucleoprotein (vRNP) complex binds to the CTD of transcriptionally engaged Pol II. Furthermore, we provide evidence that the viral polymerase binds directly to the serine-5-phosphorylated form of the Pol II CTD, both in the presence and in the absence of viral RNA, and show that this interaction is conserved in evolutionarily distant influenza viruses. We propose a model in which direct binding of the viral RNA polymerase in the context of vRNPs to Pol II early in infection facilitates cap snatching, while we suggest that binding of free viral polymerase to Pol II late in infection may trigger Pol II degradation. IMPORTANCE: Influenza viruses cause yearly epidemics and occasional pandemics that pose a threat to human health, as well as represent a large economic burden to health care systems globally. Existing vaccines are not always effective, as they may not exactly match the circulating viruses. Furthermore, there are a limited number of antivirals available, and development of resistance to these is a concern. New measures to combat influenza are needed, but before they can be developed, it is necessary to better understand the molecular interactions between influenza viruses and their host cells. By providing further insights into the molecular details of how influenza viruses hijack the host transcriptional machinery, we aim to uncover novel targets for the development of antivirals.


Assuntos
Vírus da Influenza A/enzimologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Modelos Moleculares , Mimetismo Molecular , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA Polimerase II/química , RNA Viral/genética , RNA Viral/metabolismo , Ribonucleoproteínas/química , Serina , Replicação Viral
6.
Nat Commun ; 5: 4816, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25226414

RESUMO

Viruses use virions to spread between hosts, and virion composition is therefore the primary determinant of viral transmissibility and immunogenicity. However, the virions of many viruses are complex and pleomorphic, making them difficult to analyse in detail. Here we address this by identifying and quantifying virion proteins with mass spectrometry, producing a complete and quantified model of the hundreds of host-encoded and viral proteins that make up the pleomorphic virions of influenza viruses. We show that a conserved influenza virion architecture is maintained across diverse combinations of virus and host. This 'core' architecture, which includes substantial quantities of host proteins as well as the viral protein NS1, is elaborated with abundant host-dependent features. As a result, influenza virions produced by mammalian and avian hosts have distinct protein compositions. Finally, we note that influenza virions share an underlying protein composition with exosomes, suggesting that influenza virions form by subverting microvesicle production.


Assuntos
Especificidade de Hospedeiro/genética , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Proteínas não Estruturais Virais/genética , Vírion/ultraestrutura , Sequência de Aminoácidos , Animais , Bovinos , Galinhas , Cães , Células Epiteliais/virologia , Expressão Gênica , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Modelos Moleculares , Dados de Sequência Molecular , Óvulo/virologia , Alinhamento de Sequência , Carga Viral , Vírion/genética , Vírion/crescimento & desenvolvimento
7.
Microb Cell Fact ; 9: 64, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20813055

RESUMO

Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
Appl Microbiol Biotechnol ; 86(2): 633-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19876625

RESUMO

The DnaK/DnaJ Escherichia coli chaperone pair, co-produced along with recombinant proteins, has been widely used to assist protein folding in bacterial cells, although with poor consensus about the ultimate effect on protein quality and its general applicability. Here, we have evaluated for the first time these bacterial proteins as folding modulators in a highly promising recombinant protein platform based on insect larvae. Intriguingly, the bacterial chaperones enhanced the solubility of a reporter, misfolding-prone GFP, doubling the yield of recombinant protein that can be recovered from the larvae extracts in a production process. This occurs without negative effects on the yield of total protein (extractable plus insoluble), indicative of a proteolytic stability of the chaperone substrate. It is in contrast with what has been observed in bacteria for the same reporter protein, which is dramatically degraded in a DnaK-dependent manner. The reported data are discussed in the context of the biotechnological potential and applicability of prokaryotic chaperones in complex, eukaryotic factories for recombinant protein production.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Lepidópteros/genética , Lepidópteros/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Biotecnologia/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Larva/genética , Larva/metabolismo , Dobramento de Proteína
9.
Bioeng Bugs ; 1(2): 148-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21326941

RESUMO

Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Dobramento de Proteína , Proteólise , Proteínas Recombinantes/genética
10.
Appl Environ Microbiol ; 75(24): 7850-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820142

RESUMO

Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems.


Assuntos
Proteínas de Escherichia coli/biossíntese , Expressão Gênica , Proteínas de Choque Térmico HSP40/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Spodoptera/genética , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/citologia
11.
Microb Cell Fact ; 8: 4, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19133126

RESUMO

The progressive solving of the conformation of aggregated proteins and the conceptual understanding of the biology of inclusion bodies in recombinant bacteria is providing exciting insights on protein folding and quality. Interestingly, newest data also show an unexpected functional and structural complexity of soluble recombinant protein species and picture the whole bacterial cell factory scenario as more intricate than formerly believed.

12.
Biotechnol Bioeng ; 101(6): 1353-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18980180

RESUMO

Many enzymes or fluorescent proteins produced in Escherichia coli are enzymatically active or fluorescent respectively when deposited as inclusion bodies. The occurrence of insoluble but functional protein species with native-like secondary structure indicates that solubility and conformational quality of recombinant proteins are not coincident parameters, and suggests that both properties can be engineered independently. We have here proven this principle by producing elevated yields of a highly fluorescent but insoluble green fluorescent protein (GFP) in a DnaK- background, and further enhancing its solubility through adjusting the growth temperature and GFP gene expression rate. The success of such a two-step approach confirms the independent control of solubility and conformational quality, advocates for new routes towards high quality protein production and intriguingly, proves that high protein yields dramatically compromise the conformational quality of soluble versions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP70/genética , Conformação Proteica , Proteínas Recombinantes/genética , Solubilidade , Temperatura
13.
Appl Environ Microbiol ; 74(23): 7431-3, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18836021

RESUMO

We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Solubilidade
14.
J Mol Biol ; 374(1): 195-205, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17920630

RESUMO

In bacteria, protein overproduction results in the formation of inclusion bodies, sized protein aggregates showing amyloid-like properties such as seeding-driven formation, amyloid-tropic dye binding, intermolecular beta-sheet architecture and cytotoxicity on mammalian cells. During protein deposition, exposed hydrophobic patches force intermolecular clustering and aggregation but these aggregation determinants coexist with properly folded stretches, exhibiting native-like secondary structure. Several reports indicate that inclusion bodies formed by different enzymes or fluorescent proteins show detectable biological activity. By using an engineered green fluorescent protein as reporter we have examined how the cell quality control distributes such active but misfolded protein species between the soluble and insoluble cell fractions and how aggregation determinants act in cells deficient in quality control functions. Most of the tested genetic deficiencies in different cytosolic chaperones and proteases (affecting DnaK, GroEL, GroES, ClpB, ClpP and Lon at different extents) resulted in much less soluble but unexpectedly more fluorescent polypeptides. The enrichment of aggregates with fluorescent species results from a dramatic inhibition of ClpP and Lon-mediated, DnaK-surveyed green fluorescent protein degradation, and it does not perturb the amyloid-like architecture of inclusion bodies. Therefore, the Escherichia coli quality control system promotes protein solubility instead of conformational quality through an overcommitted proteolysis of aggregation-prone polypeptides, irrespective of their global conformational status and biological properties.


Assuntos
Citosol/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico , Corpos de Inclusão , Chaperonas Moleculares/genética , Mutação , Desnaturação Proteica , Solubilidade
15.
FEMS Microbiol Lett ; 273(2): 187-95, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17561947

RESUMO

Misfolding-prone proteins produced in bacteria usually fail to adopt their native conformation and aggregate. In cells producing folding-reluctant protein species, folding modulators are supposed to be limiting, a fact that enhances protein deposition. Therefore, coproducing DnaK or other main chaperones along with the target protein has been a common approach to gain solubility, although with very inconsistent and often discouraging results. In an attempt to understand the reason for this inconsistency, the impact of exogenous DnaK (encoded in an accompanying plasmid) on two protein features observed as indicators of protein quality, namely solubility and functionality, has been analysed here through the specific fluorescence emission of a reporter Green Fluorescent Protein (GFP). Intriguingly, GFP solubility is strongly dependent on its own yield but poorly affected by DnaK levels. On the contrary, the specific fluorescence of both soluble and insoluble GFP populations is simultaneously modulated by the availability of DnaK, with a profile that is clearly dissimilar to that shown by protein solubility. Therefore, solubility, not being coincident with the biological activity of the target protein, might not be a robust indicator of protein quality.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Corpos de Inclusão , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Dobramento de Proteína , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA