Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 25(9): 692-701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356622

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the presence of hamartomas in multiple organs. At the molecular level, the disease is caused by pathogenic variants in the TSC1 and TSC2 genes, and only 10% to 25% of clinically diagnosed patients remain negative after multiplex ligation-dependent probe amplification and exon sequencing of both genes. Here, to improve the molecular diagnosis of TSC, we developed an integral approach that includes multiplex ligation-dependent probe amplification and deep-coverage next-generation sequencing of the entire TSC1 and TSC2 genes, along with an adapted bioinformatic pipeline to detect variants at low allele frequencies (>1%). Using this workflow, the molecular cause was identified in 29 of 42 patients with TSC, describing here, for the first time, 12 novel pathogenic variants in TSC genes. These variants included seven splicing variants, five of which were studied at the cDNA level, determining their effect on splicing. In addition, 8 of the 29 pathogenic variants were detected in mosaicism, including four patients with previous negative study results who presented extremely low mosaic variants (allele frequency, <16%). We demonstrate that this integral approach allows the molecular diagnosis of patients with TSC and improves the conventional one by adapting the technology to the detection of low-frequency mosaics.


Assuntos
Mosaicismo , Esclerose Tuberosa , Humanos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética
2.
Int J Mol Sci ; 23(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955418

RESUMO

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype−phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype−phenotype correlations and improve prognostic outcomes.


Assuntos
Atrofia Muscular Espinal , Estudos de Associação Genética , Homozigoto , Humanos , Íntrons , Atrofia Muscular Espinal/genética , Mutação , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA