Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CRISPR J ; 5(1): 40-52, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935462

RESUMO

Nearly 90% of human pathogenic mutations are caused by small genetic variations, and methods to correct these errors efficiently are critically important. One way to make small DNA changes is providing a single-stranded oligo deoxynucleotide (ssODN) containing an alteration coupled with a targeted double-strand break (DSB) at the target locus in the genome. Coupling an ssODN donor with a CRISPR-Cas9-mediated DSB is one of the most streamlined approaches to introduce small changes. However, in many systems, this approach is inefficient and introduces imprecise repair at the genetic junctions. We herein report a technology that uses spatiotemporal localization of an ssODN with CRISPR-Cas9 to improve gene alteration. We show that by fusing an ssODN template to the trans-activating RNA (tracrRNA), we recover precise genetic alterations, with increased integration and precision in vitro and in vivo. Finally, we show that this technology can be used to enhance gene conversion with other gene editing tools such as transcription activator like effector nucleases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA , Quebras de DNA de Cadeia Dupla , Humanos , RNA/genética
2.
Nucleic Acids Res ; 49(1): 67-78, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305328

RESUMO

Gene-editing experiments commonly elicit the error-prone non-homologous end joining for DNA double-strand break (DSB) repair. Microhomology-mediated end joining (MMEJ) can generate more predictable outcomes for functional genomic and somatic therapeutic applications. We compared three DSB repair prediction algorithms - MENTHU, inDelphi, and Lindel - in identifying MMEJ-repaired, homogeneous genotypes (PreMAs) in an independent dataset of 5,885 distinct Cas9-mediated mouse embryonic stem cell DSB repair events. MENTHU correctly identified 46% of all PreMAs available, a ∼2- and ∼60-fold sensitivity increase compared to inDelphi and Lindel, respectively. In contrast, only Lindel correctly predicted predominant single-base insertions. We report the new algorithm MENdel, a combination of MENTHU and Lindel, that achieves the most predictive coverage of homogeneous out-of-frame mutations in this large dataset. We then estimated the frequency of Cas9-targetable homogeneous frameshift-inducing DSBs in vertebrate coding regions for gene discovery using MENdel. 47 out of 54 genes (87%) contained at least one early frameshift-inducing DSB and 49 out of 54 (91%) did so when also considering Cas12a-mediated deletions. We suggest that the use of MENdel helps researchers use MMEJ at scale for reverse genetics screenings and with sufficient intra-gene density rates to be viable for nearly all loss-of-function based gene editing therapeutic applications.


Assuntos
Algoritmos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mutação da Fase de Leitura , Edição de Genes/métodos , Terapia Genética/métodos , Genômica/métodos , Mutação INDEL , Mutação com Perda de Função , Genética Reversa/métodos , Animais , Proteínas de Bactérias/metabolismo , Caspase 9/metabolismo , Conjuntos de Dados como Assunto , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Curva ROC , Streptococcus pyogenes/enzimologia , Peixe-Zebra/genética
3.
Ann Glob Health ; 86(1): 39, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32322537

RESUMO

Engineering technology plays a pivotal role in the delivery of health care in under-resourced countries by providing an infrastructure to improve patient outcomes. However, sustainability of these technologies is difficult in these settings oftentimes due to limited resources or training. The framework presented in this editorial focuses on establishing medical and laboratory equipment sustainability in developing countries and is comprised of four steps: 1) establishing reliable in-country relationships with stakeholders, 2) identifying needs for sustainable solutions locally, 3) exploring potential solutions and assessing their effort-to-impact ratios, and 4) working with strategic partners to implement solutions with clear performance metrics. By focusing on the sustainability of donated equipment instead of the equipment itself, this method presented distinguishes itself from other philanthropic endeavors in the field by seeking to establish preventive maintenance habits that can impact clinical outcomes of a community long term. Application of this methodology is reported in the Original Research Article "A Low-Cost Humidity Control System to Protect Microscopes in a Tropical Climate" by Asp et. al.


Assuntos
Países em Desenvolvimento , Equipamentos e Provisões , Recursos em Saúde , Avaliação de Programas e Projetos de Saúde , Utilização de Equipamentos e Suprimentos , Humanos , Manutenção , Avaliação das Necessidades , Organizações sem Fins Lucrativos , Participação dos Interessados , Ensino
4.
Ann Glob Health ; 86(1): 16, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32090023

RESUMO

Introduction: A clean and functional microscope is necessary for accurate diagnosis of infectious diseases. In tropical climates, high humidity levels and improper storage conditions allow for the accumulation of debris and fungus on the optical components of diagnostic equipment, such as microscopes. Objective: Our objective was to develop and implement a low-cost, sustainable, easy to manage, low-maintenance, passive humidity control chamber to both reduce debris accumulation and microbial growth onto the optical components of microscopes. Methods: Constructed from easily-sourced and locally available materials, the cost of each humidity control chamber is approximately $2.35 USD. Relative humidity levels were recorded every 30 minutes over a period of 10 weeks from two chambers deployed at the Belize Vector and Ecology Center and the University of Belize. Results: The humidity control chamber deployed at the University of Belize maintained internal relative humidity at an average of 35.3% (SD = 4.2%) over 10 weeks, while the average external relative humidity was 86.4% (SD = 12.4%). The humidity control chamber deployed at the Belize Vector and Ecology Center effectively maintained internal relative humidity to an average of 54.5% (SD = 9.4%) over 10 weeks, while the average external relative humidity was 86.9% (SD = 12.9%). Conclusions: Control of relative humidity is paramount for the sustainability of medical equipment in tropical climates. The humidity control chambers reduced relative humidity to levels that were not conducive for fungal growth while reducing microscope contamination from external sources. This will likely extend the service life of the microscopes while taking advantage of low-cost, locally sourced components.


Assuntos
Umidade/prevenção & controle , Higroscópicos , Microscopia/instrumentação , Clima Tropical , Belize , Custos e Análise de Custo , Contaminação de Equipamentos/economia , Contaminação de Equipamentos/prevenção & controle , Equipamentos e Provisões , Fungos/crescimento & desenvolvimento , Humanos , Umidade/efeitos adversos , Higroscópicos/economia , Microscopia/economia , Dióxido de Silício/economia
5.
Nucleic Acids Res ; 47(W1): W175-W182, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31127311

RESUMO

The discovery and development of DNA-editing nucleases (Zinc Finger Nucleases, TALENs, CRISPR/Cas systems) has given scientists the ability to precisely engineer or edit genomes as never before. Several different platforms, protocols and vectors for precision genome editing are now available, leading to the development of supporting web-based software. Here we present the Gene Sculpt Suite (GSS), which comprises three tools: (i) GTagHD, which automatically designs and generates oligonucleotides for use with the GeneWeld knock-in protocol; (ii) MEDJED, a machine learning method, which predicts the extent to which a double-stranded DNA break site will utilize the microhomology-mediated repair pathway; and (iii) MENTHU, a tool for identifying genomic locations likely to give rise to a single predominant microhomology-mediated end joining allele (PreMA) repair outcome. All tools in the GSS are freely available for download under the GPL v3.0 license and can be run locally on Windows, Mac and Linux systems capable of running R and/or Docker. The GSS is also freely available online at www.genesculpt.org.


Assuntos
Bases de Dados Genéticas , Edição de Genes , Engenharia Genética/métodos , Software , Animais , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética
6.
PLoS Genet ; 14(9): e1007652, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208061

RESUMO

One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Edição de Genes/métodos , Modelos Genéticos , Algoritmos , Alelos , Animais , Estudos de Viabilidade , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/métodos , Células HeLa , Humanos , Masculino , Mutagênese Sítio-Dirigida , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Peixe-Zebra
7.
Methods ; 150: 3-10, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076892

RESUMO

The rapid growth of the field of gene editing can largely be attributed to the discovery and optimization of designer endonucleases. These include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regular interspersed short palindromic repeat (CRISPR) systems including Cas9, Cas12a, and structure-guided nucleases. Zebrafish (Danio rerio) have proven to be a powerful model system for genome engineering testing and applications due to their external development, high fecundity, and ease of housing. As the zebrafish gene editing toolkit continues to grow, it is becoming increasingly important to understand when and how to utilize which of these technologies for maximum efficacy in a particular project. While CRISPR-Cas9 has brought broad attention to the field of genome engineering in recent years, designer endonucleases have been utilized in genome engineering for more than two decades. This chapter provides a brief overview of designer endonuclease and other gene editing technologies in zebrafish as well as some of their known functional benefits and limitations depending on specific project goals. Finally, selected prospects for additional gene editing tools are presented, promising additional options for directed genomic programming of this versatile animal model system.


Assuntos
Desoxirribonucleases/genética , Edição de Genes/métodos , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Desoxirribonucleases/metabolismo , Genoma/genética , Engenharia de Proteínas
8.
Nat Rev Nephrol ; 14(11): 663-677, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30089813

RESUMO

The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.


Assuntos
Proteína 9 Associada à CRISPR , Reparo do DNA , Edição de Genes/métodos , Nefropatias/genética , Animais , Modelos Animais de Doenças , Epigênese Genética , Técnicas de Silenciamento de Genes , Marcação de Genes , Terapia Genética , Vetores Genéticos , Humanos , Nefropatias/terapia , Efetores Semelhantes a Ativadores de Transcrição , Nucleases de Dedos de Zinco
9.
Hum Gene Ther ; 27(6): 419-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27230540

RESUMO

Genome engineering has gone mainstream because of breakthroughs in defining and harnessing naturally occurring, customizable DNA recognition cursors (protein or RNA-guided). At present, most gene editing relies on these cursors to direct custom DNA endonucleases to a specific genomic sequence to induce a double-strand break. New tools for genome engineering are continuously being explored, and another advance in DNA targeting has recently been described. Argonaute isolated from Natronobacterium gregoryi (NgAgo) is an ssDNA-based cursor that thus far has no known limitations in sequence recognition, shows promise for high specificity, and for many applications may represent a potentially more accessible genome-editing system over prior tools as it requires only a single, 24-base, 5' phosphorylated ssDNA for DNA targeting. Genome engineering is in a remarkable moment of unprecedented growth with exponential reduction in costs reminiscent of Moore's law in electronics. Many questions remain with regard to Argonaute utility in specific systems, but there is no doubt that genome engineering is expanding into new and exciting areas from synthetic biology to gene therapy.


Assuntos
Proteínas Argonautas/genética , DNA de Cadeia Simples/genética , Edição de Genes , Animais , Marcação de Genes , Humanos
10.
Hum Gene Ther ; 27(6): 451-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26854857

RESUMO

Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications.


Assuntos
Engenharia Genética/métodos , Genômica/métodos , Efetores Semelhantes a Ativadores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Exp Neurol ; 276: 31-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607912

RESUMO

Unilateral cervical spinal cord hemisection at C2 (C2SH) interrupts descending bulbospinal inputs to phrenic motoneurons, paralyzing the diaphragm muscle. Recovery after C2SH is enhanced by brain derived neurotrophic factor (BDNF) signaling via the tropomyosin-related kinase subtype B (TrkB) receptor in phrenic motoneurons. The role for gene therapy using adeno-associated virus (AAV)-mediated delivery of TrkB to phrenic motoneurons is not known. The present study determined the therapeutic efficacy of intrapleural delivery of AAV7 encoding for full-length TrkB (AAV-TrkB) to phrenic motoneurons 3 days post-C2SH. Diaphragm EMG was recorded chronically in male rats (n=26) up to 21 days post-C2SH. Absent ipsilateral diaphragm EMG activity was verified 3 days post-C2SH. A greater proportion of animals displayed recovery of ipsilateral diaphragm EMG activity during eupnea by 14 and 21 days post-SH after AAV-TrkB (10/15) compared to AAV-GFP treatment (2/11; p=0.031). Diaphragm EMG amplitude increased over time post-C2SH (p<0.001), and by 14 days post-C2SH, AAV-TrkB treated animals displaying recovery achieved 48% of the pre-injury values compared to 27% in AAV-GFP treated animals. Phrenic motoneuron mRNA expression of glutamatergic AMPA and NMDA receptors revealed a significant, positive correlation (r(2)=0.82), with increased motoneuron NMDA expression evident in animals treated with AAV-TrkB and that displayed recovery after C2SH. Overall, gene therapy using intrapleural delivery of AAV-TrkB to phrenic motoneurons is sufficient to promote recovery of diaphragm activity, adding a novel potential intervention that can be administered after upper cervical spinal cord injury to improve impaired respiratory function.


Assuntos
Terapia Genética/métodos , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinases/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Medula Cervical/patologia , Vértebras Cervicais , Masculino , Glicoproteínas de Membrana/administração & dosagem , Proteínas Tirosina Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor trkB , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA