Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Free Radic Biol Med ; 210: 448-461, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036067

RESUMO

Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Feminino , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , NADP/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Colina/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Nat Metab ; 5(12): 2131-2147, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957387

RESUMO

Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.


Assuntos
Glutamina , Neoplasias , Humanos , Glutamina/metabolismo , Proliferação de Células , Prolina , Glutamatos
4.
Cell Death Dis ; 14(1): 35, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653345

RESUMO

The SIRT6 deacetylase has been implicated in DNA repair, telomere maintenance, glucose and lipid metabolism and, importantly, it has critical roles in the brain ranging from its development to neurodegeneration. Here, we combined transcriptomics and metabolomics approaches to characterize the functions of SIRT6 in mouse brains. Our analysis reveals that SIRT6 is a central regulator of mitochondrial activity in the brain. SIRT6 deficiency in the brain leads to mitochondrial deficiency with a global downregulation of mitochondria-related genes and pronounced changes in metabolite content. We suggest that SIRT6 affects mitochondrial functions through its interaction with the transcription factor YY1 that, together, regulate mitochondrial gene expression. Moreover, SIRT6 target genes include SIRT3 and SIRT4, which are significantly downregulated in SIRT6-deficient brains. Our results demonstrate that the lack of SIRT6 leads to decreased mitochondrial gene expression and metabolomic changes of TCA cycle byproducts, including increased ROS production, reduced mitochondrial number, and impaired membrane potential that can be partially rescued by restoring SIRT3 and SIRT4 levels. Importantly, the changes we observed in SIRT6-deficient brains are also occurring in aging human brains and particularly in patients with Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis disease. Overall, our results suggest that the reduced levels of SIRT6 in the aging brain and neurodegeneration initiate mitochondrial dysfunction by altering gene expression, ROS production, and mitochondrial decay.


Assuntos
Sirtuínas , Animais , Humanos , Camundongos , Encéfalo/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia
5.
Cell Rep ; 37(13): 110176, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965416

RESUMO

Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.


Assuntos
Cromatina/genética , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Histonas/metabolismo , Fases de Leitura Aberta , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Cromatina/metabolismo , Enzimas Reparadoras do DNA/genética , Ensaios de Triagem em Larga Escala , Histonas/genética , Humanos , Cinética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
6.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
7.
Nat Commun ; 9(1): 101, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317652

RESUMO

Sirtuins are NAD+-dependent deacetylases that facilitate cellular stress response. They include SirT6, which protects genome stability and regulates metabolic homeostasis through gene silencing, and whose loss induces an accelerated aging phenotype directly linked to hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved cysteines in the PRE-SET domain of Suv39h1. Following activation of NF-κB signaling Suv39h1 is released from the IκBα locus, subsequently repressing the NF-κB pathway. We propose that SirT6 attenuates the NF-κB pathway through IκBα upregulation via cysteine monoubiquitination and chromatin eviction of Suv39h1. We suggest a mechanism based on SirT6-mediated enhancement of a negative feedback loop that restricts the NF-κB pathway.


Assuntos
Cisteína/metabolismo , Metiltransferases/metabolismo , NF-kappa B/metabolismo , Domínios PR-SET , Proteínas Repressoras/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Cisteína/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Metiltransferases/genética , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas Repressoras/genética , Transdução de Sinais , Sirtuínas/genética , Ubiquitinação , Regulação para Cima
8.
Cancer Discov ; 7(11): 1336-1353, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28974511

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes. Using a transgenic screen in zebrafish, thymocyte selection-associated high mobility group box protein (TOX) was uncovered as a collaborating oncogenic driver that accelerated T-ALL onset by expanding the initiating pool of transformed clones and elevating genomic instability. TOX is highly expressed in a majority of human T-ALL and is required for proliferation and continued xenograft growth in mice. Using a wide array of functional analyses, we uncovered that TOX binds directly to KU70/80 and suppresses recruitment of this complex to DNA breaks to inhibit nonhomologous end joining (NHEJ) repair. Impaired NHEJ is well known to cause genomic instability, including development of T-cell malignancies in KU70- and KU80-deficient mice. Collectively, our work has uncovered important roles for TOX in regulating NHEJ by elevating genomic instability during leukemia initiation and sustaining leukemic cell proliferation following transformation.Significance: TOX is an HMG box-containing protein that has important roles in T-ALL initiation and maintenance. TOX inhibits the recruitment of KU70/KU80 to DNA breaks, thereby inhibiting NHEJ repair. Thus, TOX is likely a dominant oncogenic driver in a large fraction of human T-ALL and enhances genomic instability. Cancer Discov; 7(11); 1336-53. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Reparo do DNA por Junção de Extremidades/genética , Instabilidade Genômica/genética , Proteínas HMGB/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proliferação de Células/genética , Humanos , Autoantígeno Ku/genética , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/genética
9.
Nat Cell Biol ; 17(5): 545-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915124

RESUMO

How embryonic stem cells (ESCs) commit to specific cell lineages and yield all cell types of a fully formed organism remains a major question. ESC differentiation is accompanied by large-scale histone and DNA modifications, but the relations between these epigenetic categories are not understood. Here we demonstrate the interplay between the histone deacetylase sirtuin 6 (SIRT6) and the ten-eleven translocation enzymes (TETs). SIRT6 targets acetylated histone H3 at Lys 9 and 56 (H3K9ac and H3K56ac), while TETs convert 5-methylcytosine into 5-hydroxymethylcytosine (5hmC). ESCs derived from Sirt6 knockout (S6KO) mice are skewed towards neuroectoderm development. This phenotype involves derepression of OCT4, SOX2 and NANOG, which causes an upregulation of TET-dependent production of 5hmC. Genome-wide analysis revealed neural genes marked with 5hmC in S6KO ESCs, thereby implicating TET enzymes in the neuroectoderm-skewed differentiation phenotype. We demonstrate that SIRT6 functions as a chromatin regulator safeguarding the balance between pluripotency and differentiation through Tet-mediated production of 5hmC.


Assuntos
Diferenciação Celular , Linhagem da Célula , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Sirtuínas/metabolismo , 5-Metilcitosina/análogos & derivados , Acetilação , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/patologia , Células-Tronco Embrionárias/transplante , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Proteína Homeobox Nanog , Neurogênese , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Sirtuínas/deficiência , Sirtuínas/genética , Teratoma/enzimologia , Teratoma/patologia , Transfecção
10.
Methods Mol Biol ; 1077: 149-163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24014405

RESUMO

Most of the sirtuins' nuclear substrates identified so far are histones or other chromatin-associated proteins and, thus, it is of special relevance the development of good biochemical techniques to analyze the biology of these proteins in the context of chromatin. Here, we describe several of the chromatin-based techniques to identify sirtuins' substrates, including a chromatin immunoprecipitation (ChIP) protocol, an acid-extraction protocol, and a nucleosomal immunoprecipitation protocol to analyze putative sirtuin chromatin interactors.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Histonas/metabolismo , Imunoprecipitação/métodos , Nucleossomos/metabolismo , Sirtuínas/metabolismo , Cromatina/genética , Histonas/genética , Humanos , Nucleossomos/genética , Sirtuínas/genética
11.
Mol Cell ; 51(4): 454-68, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23911928

RESUMO

DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally deacetylates histone H3K56. Lack of SIRT6 and SNF2H impairs chromatin remodeling, increasing sensitivity to genotoxic damage and recruitment of downstream factors such as 53BP1 and breast cancer 1 (BRCA1). Remarkably, SIRT6-deficient mice exhibit lower levels of chromatin-associated SNF2H in specific tissues, a phenotype accompanied by DNA damage. We demonstrate that SIRT6 is critical for recruitment of a chromatin remodeler as an early step in the DNA damage response, indicating that proper unfolding of chromatin plays a rate-limiting role. We present a unique crosstalk between a histone modifier and a chromatin remodeler, regulating a coordinated response to prevent DNA damage.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Instabilidade Genômica , Sirtuínas/metabolismo , Sirtuínas/fisiologia , Adenosina Trifosfatases/genética , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Hipocampo/citologia , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo , Sirtuínas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Cancer Discov ; 3(5): 497-501, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23658298

RESUMO

Mitochondrial metabolism influences histone and DNA modifications by retrograde signaling and activation of transcriptional programs. Considering the high number of putative sites for acetylation and methylation in chromatin, we propose in this perspective article that epigenetic modifications might impinge on cellular metabolism by affecting the pool of acetyl-CoA and S-adenosylmethionine.


Assuntos
Cromatina/metabolismo , Metabolismo Energético , Acetilcoenzima A/metabolismo , Animais , Núcleo Celular/metabolismo , Epigênese Genética , Humanos , S-Adenosilmetionina/metabolismo
13.
Front Pharmacol ; 3: 22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363287

RESUMO

More than a decade ago, sirtuins were discovered as a highly conserved family of NAD(+)-dependent enzymes that extend lifespan in lower organisms. In mammals, sirtuins are key regulators of stress responses and metabolism, influencing a range of diseases, including diabetes, neurodegeneration, and cancer. In recent years, new functions of sirtuins have been characterized, uncovering the underlying mechanisms of their multifaceted role in metabolism. Here, we specifically review recent progress on the role of sirtuins in DNA repair and energy metabolism, further discussing the implication of sirtuins in the biology of cancer.

14.
Nat Commun ; 1: 3, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20975665

RESUMO

Genetic overexpression of protein deacetylase Sir2 increases longevity in a variety of lower organisms, and this has prompted interest in the effects of its closest mammalian homologue, Sirt1, on ageing and cancer. We have generated transgenic mice moderately overexpressing Sirt1 under its own regulatory elements (Sirt1-tg). Old Sirt1-tg mice present lower levels of DNA damage, decreased expression of the ageing-associated gene p16(Ink4a), a better general health and fewer spontaneous carcinomas and sarcomas. These effects, however, were not sufficiently potent to affect longevity. To further extend these observations, we developed a metabolic syndrome-associated liver cancer model in which wild-type mice develop multiple carcinomas. Sirt1-tg mice show a reduced susceptibility to liver cancer and exhibit improved hepatic protection from both DNA damage and metabolic damage. Together, these results provide direct proof of the anti-ageing activity of Sirt1 in mammals and of its tumour suppression activity in ageing- and metabolic syndrome-associated cancer.


Assuntos
Envelhecimento/fisiologia , Neoplasias Hepáticas/terapia , Síndrome Metabólica/complicações , Síndrome Metabólica/terapia , Neoplasias/etiologia , Neoplasias/metabolismo , Sirtuína 1/metabolismo , Envelhecimento/genética , Animais , Dano ao DNA/genética , Dano ao DNA/fisiologia , Gorduras na Dieta/efeitos adversos , Dietilnitrosamina/toxicidade , Feminino , Teste de Tolerância a Glucose , Neoplasias Hepáticas/etiologia , Longevidade/genética , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sirtuína 1/genética
15.
J Cell Biol ; 187(6): 773-80, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19995934

RESUMO

In response to DNA damage, cells activate a phosphorylation-based signaling cascade known as the DNA damage response (DDR). One of the main outcomes of DDR activation is inhibition of cyclin-dependent kinase (Cdk) activity to restrain cell cycle progression until lesions are healed. Recent studies have revealed a reverse connection by which Cdk activity modulates processing of DNA break ends and DDR activation. However, the specific contribution of individual Cdks to this process remains poorly understood. To address this issue, we have examined the DDR in murine cells carrying a defined set of Cdks. Our results reveal that genome maintenance programs of postreplicative cells, including DDR, are regulated by the overall level of Cdk activity and not by specific Cdks.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Reparo do DNA , Fibroblastos/enzimologia , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Proliferação de Células , Células Cultivadas , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 3 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Fase G1 , Fase G2 , Instabilidade Genômica , Genótipo , Histonas/metabolismo , Interfase , Camundongos , Camundongos Transgênicos , Fenótipo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Fase S , Fatores de Tempo
16.
PLoS One ; 4(5): e5475, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19421407

RESUMO

Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Senescência Celular , Proteínas de Ligação a DNA/fisiologia , Fibrossarcoma/prevenção & controle , Genes ras/fisiologia , Neoplasias Pulmonares/prevenção & controle , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Adenoma/metabolismo , Adenoma/patologia , Adenoma/prevenção & controle , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Dano ao DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrossarcoma/induzido quimicamente , Fibrossarcoma/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metilcolantreno/toxicidade , Camundongos , Camundongos Knockout , Fosforilação , Células Tumorais Cultivadas
17.
J Cell Biol ; 178(7): 1101-8, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17893239

RESUMO

In response to DNA damage, chromatin undergoes a global decondensation process that has been proposed to facilitate genome surveillance. However, the impact that chromatin compaction has on the DNA damage response (DDR) has not directly been tested and thus remains speculative. We apply two independent approaches (one based on murine embryonic stem cells with reduced amounts of the linker histone H1 and the second making use of histone deacetylase inhibitors) to show that the strength of the DDR is amplified in the context of "open" chromatin. H1-depleted cells are hyperresistant to DNA damage and present hypersensitive checkpoints, phenotypes that we show are explained by an increase in the amount of signaling generated at each DNA break. Furthermore, the decrease in H1 leads to a general increase in telomere length, an as of yet unrecognized role for H1 in the regulation of chromosome structure. We propose that slight differences in the epigenetic configuration might account for the cell-to-cell variation in the strength of the DDR observed when groups of cells are challenged with DNA breaks.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Dano ao DNA , Animais , Cromatina/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos , Mutagênicos/farmacologia , Troca de Cromátide Irmã/efeitos dos fármacos , Telômero/metabolismo
18.
Cell Div ; 1(1): 7, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16759429

RESUMO

Unrepaired DNA double-strand breaks (DSBs) are a major cause for genomic instability. Therefore, upon detection of a DSB a rapid response must be assembled to coordinate the proper repair/signaling of the lesion or the elimination of cells with unsustainable amounts of DNA damage. Three members of the PIKK family of protein kinases -ATM, ATR and DNA-PKcs- take the lead and initiate the signaling cascade emanating from DSB sites. Whereas DNA-PKcs activity seems to be restricted to the phosphorylation of targets involved in DNA repair, ATM and ATR phosphorylate a broad spectrum of cell cycle regulators and DNA repair proteins. In the canonical model, ATM and ATR are activated by two different types of lesions and signal through two independent and alternate pathways. Specifically, ATR is activated by various forms of DNA damage, including DSBs, arising at stalled replication forks ("replication stress"), and ATM is responsible for the signaling of DSBs that are not associated with the replication machinery throughout the cell cycle. Recent evidence suggests that this model might be oversimplified and that coordinated crosstalk between ATM and ATR activation routes goes on at the core of the DNA damage response.

19.
J Exp Med ; 203(2): 297-303, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16461339

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious lesions that can challenge genomic integrity. Concomitant to the repair of the breaks, a rapid signaling cascade must be coordinated at the lesion site that leads to the activation of cell cycle checkpoints and/or apoptosis. In this context, ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR) protein kinases are the earliest signaling molecules that are known to initiate the transduction cascade at damage sites. The current model places ATM and ATR in separate molecular routes that orchestrate distinct pathways of the checkpoint responses. Whereas ATM signals DSBs arising from ionizing radiation (IR) through a Chk2-dependent pathway, ATR is activated in a variety of replication-linked DSBs and leads to activation of the checkpoints in a Chk1 kinase-dependent manner. However, activation of the G2/M checkpoint in response to IR escapes this accepted paradigm because it is dependent on both ATM and ATR but independent of Chk2. Our data provides an explanation for this observation and places ATM activity upstream of ATR recruitment to IR-damaged chromatin. These data provide experimental evidence of an active cross talk between ATM and ATR signaling pathways in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromatina/metabolismo , Quebra Cromossômica/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ataxia Telangiectasia/enzimologia , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Linhagem Celular Transformada , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Citometria de Fluxo , Raios gama , Humanos , Fosforilação/efeitos da radiação , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA